10.1002/cctc.201801351
ChemCatChem
FULL PAPER
Gándara, ACS Applied Materials & Interfaces 2018, 10, 733-744; b)
W.-Y. Gao, Y. Chen, Y. Niu, K. Williams, L. Cash, P. J. Perez, L.
Wojtas, J. Cai, Y.-S. Chen, S. Ma, Angewandte Chemie
International Edition 2014, 53, 2615-2619.
J. Song, Z. Zhang, B. Han, S. Hu, W. Li, Y. Xie, Green Chemistry
2008, 10, 1337-1341.
Catalytic tests
The catalytic tests were carried out in a Cambridge Design Bullfrog batch
reactor with temperature control and mechanical stirring, designed to
operate at high temperature and pressures. A fine dispersion of the
catalyst into the selected epoxide was transferred inside the reactor. Then,
the reactor was closed and the mechanical stirring speed set at 500 rpm.
The system was purged with N2 for 10 min (0.4 MPa) and then, pressurized
with CO2. The temperature was increased to 150 °C with a rate of 5 °C
min-1. The reaction mixture was stirred at 150 °C for 3 h. Then, the reaction
[7]
[8]
a) H. Vignesh Babu, K. Muralidharan, Dalton Transactions 2013, 42,
1238-1248; b) D. Tian, B. Liu, Q. Gan, H. Li, D. J. Darensbourg,
ACS Catalysis 2012, 2, 2029-2035; c) J. A. Castro-Osma, K. J.
Lamb, M. North, ACS Catalysis 2016, 6, 5012-5025; d) C. Martín, G.
Fiorani, A. W. Kleij, ACS Catalysis 2015, 5, 1353-1370.
H. Zhou, X. Lu, Science China Chemistry 2017, 60, 904-911.
a) V. B. Saptal, B. M. Bhanage, ChemSusChem 2017, 10, 1145-
1151; b) V. B. Saptal, B. M. Bhanage, ChemCatChem 2016, 8, 244-
250; c) R. Luo, Y. Chen, Q. He, X. Lin, Q. Xu, X. He, W. Zhang, X.
Zhou, H. Ji, ChemSusChem 2017, 10, 1526-1533; d) S. Yue, X.-J.
Hao, P.-P. Wang, J. Li, Molecular Catalysis 2017, 433, 420-429.
a) H. Zhong, Y. Su, X. Chen, X. Li, R. Wang, ChemSusChem 2017,
10, 4855-4863; b) W. Wang, C. Li, L. Yan, Y. Wang, M. Jiang, Y.
Ding, ACS Catalysis 2016, 6, 6091-6100.
a) F. Jutz, J.-M. Andanson, A. Baiker, Chemical Reviews 2011, 111,
322-353; b) A.-L. Girard, N. Simon, M. Zanatta, S. Marmitt, P.
Goncalves, J. Dupont, Green Chemistry 2014, 16, 2815-2825.
a) T. Wang, W. Wang, Y. Lyu, X. Chen, C. Li, Y. Zhang, X. Song, Y.
Ding, RSC Advances 2017, 7, 2836-2841; b) A. H. Jadhav, G. M.
Thorat, K. Lee, A. C. Lim, H. Kang, J. G. Seo, Catalysis Today 2016,
265, 56-67.
J. Wang, J. Leong, Y. Zhang, Green Chemistry 2014, 16, 4515-4519.
a) P. Agrigento, S. M. Al-Amsyar, B. Soree, M. Taherimehr, M.
Gruttadauria, C. Aprile, P. P. Pescarmona, Catalysis Science &
Technology 2014, 4, 1598-1607; b) C. Aprile, F. Giacalone, P.
Agrigento, L. F. Liotta, J. A. Martens, P. P. Pescarmona, M.
Gruttadauria, ChemSusChem 2011, 4, 1830-1837.
a) L. Han, H. Li, S.-J. Choi, M.-S. Park, S.-M. Lee, Y.-J. Kim, D.-W.
Park, Applied Catalysis A: General 2012, 429-430, 67-72; b) M.
Buaki-Sogo, A. Vivian, L. A. Bivona, H. Garcia, M. Gruttadauria, C.
Aprile, Catalysis Science & Technology 2016, 6, 8418-8427; c) C.
Calabrese, L. F. Liotta, E. Carbonell, F. Giacalone, M. Gruttadauria,
C. Aprile, ChemSusChem 2017, 10, 1202-1209.
[9]
[10]
mixture was cooled down to room temperature and
a
slow
depressurization of the reactor was carried out. The separation of the
catalyst from the reaction mixture was easily performed by centrifugation
(10 min at 4500 rpm). The supernatant solution was sampled and analyzed
by 1H-NMR.
[11]
[12]
[13]
Recycling tests
The recyclability of the materials was checked in the reaction between
styrene oxide and CO2. At the end of each catalytic test, the solids were
recovered by centrifugation and washed with toluene (3x35 mL), methanol
(30 mL) and diethyl ether. Moreover, the catalysts were previously
sonicated in the washing solvent up to get a good dispersion. Then, the
solids were dried under vacuum at 60 °C. Once dried, the materials were
reused for the next cycle by tailoring epoxide amount in function of the
recovered catalyst in order to maintain the ratio between moles of catalyst
and moles of epoxides. The conversions of styrene oxide into cyclic
carbonate was calculated by 1H-NMR analysis.
[14]
[15]
[16]
Acknowledgements
[17]
[18]
P. P. Pescarmona, M. Taherimehr, Catalysis Science & Technology
2012, 2, 2169-2187.
L. A. Bivona, O. Fichera, L. Fusaro, F. Giacalone, M. Buaki-Sogo,
M. Gruttadauria, C. Aprile, Catalysis Science & Technology 2015, 5,
5000-5007.
D. B. Cordes, P. D. Lickiss, F. Rataboul, Chemical Reviews 2010,
110, 2081-2173.
a) Z. Li, J. Kong, F. Wang, C. He, Journal of Materials Chemistry C
2017, 5, 5283-5298; b) H. Zhou, Q. Ye, J. Xu, Materials Chemistry
Frontiers 2017, 1, 212-230; c) H. Ghanbari, B. Cousins, A. Seifalian,
Macromol. Rapid Commun. 2011, 32, 1032-1046.
Q. Ye, H. Zhou, J. Xu, Chemistry – An Asian Journal 2016, 11, 1322-
1337.
We gratefully acknowledge the University of Palermo and the
University of Namur. C.C. gratefully acknowledges the University
of Palermo and University of Namur for a co-funded PhD
fellowship. This research used resources of the nuclear magnetic
resonance service located at the University of Namur. Dr. Luca
Fusaro is acknowledged for his support to the NMR
measurements. This service is a member of the “Plateforme
Technologique Physico-Chemical Characterization” – PC2.
[19]
[20]
[21]
[22]
V. Ervithayasuporn, N. Pornsamutsin, P. Prangyoo, K.
Sammawutthichai,
T.
Jaroentomeechai,
C.
Phurat,
T.
Teerawatananond, Dalton Transactions 2013, 42, 13747-13753.
[23]
[24]
[25]
S. Brunauer, P. H. Emmett, E. Teller, Journal of the American
Chemical Society 1938, 60, 309-319.
E. P. Barrett, L. G. Joyner, P. P. Halenda, Journal of the American
Chemical Society 1951, 73, 373-380.
T. Wang, D. Zheng, J. Zhang, B. Fan, Y. Ma, T. Ren, L. Wang, J.
Zhang, ACS Sustainable Chemistry & Engineering 2018, 6, 2574-
2582.
Keywords: CO2 conversion • cyclic carbonates • POSS • imidazolium catalyst
• heterogeneous catalysis
[1]
a) Q.-W. Song, Z.-H. Zhou, L.-N. He, Green Chemistry 2017, 19,
3707-3728; b) T. Sakakura, J.-C. Choi, H. Yasuda, Chemical
Reviews 2007, 107, 2365-2387; c) M. Aresta, A. Dibenedetto, A.
Angelini, Chemical Reviews 2014, 114, 1709-1742; d) Q. Liu, L. Wu,
R. Jackstell, M. Beller, Nature Communications 2015, 6, 5933.
M. North, R. Pasquale, C. Young, Green Chemistry 2010, 12, 1514-
1539.
a) T. Sakakura, K. Kohno, Chemical Communications 2009, 1312-
1330; b) W. Clegg, R. W. Harrington, M. North, F. Pizzato, P.
Villuendas, Tetrahedron: Asymmetry 2010, 21, 1262-1271; c) Q. Li,
J. Chen, L. Fan, X. Kong, Y. Lu, Green Energy & Environment 2016,
1, 18-42.
P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice,
Oxford University Press, 2000.
B. M. Bhanage, S.-i. Fujita, Y. Ikushima, M. Arai, Applied Catalysis
A: General 2001, 219, 259-266.
a) P. T. K. Nguyen, H. T. D. Nguyen, H. N. Nguyen, C. A. Trickett,
Q. T. Ton, E. Gutiérrez-Puebla, M. A. Monge, K. E. Cordova, F.
[26]
[27]
[28]
[29]
[30]
[31]
Y.-Y. Zhang, L. Chen, S.-F. Yin, S.-L. Luo, C.-T. Au, Catalysis
Letters 2012, 142, 1376-1381.
J.-Q. Wang, X.-D. Yue, F. Cai, L.-N. He, Catalysis Communications
2007, 8, 167-172.
D. Xing, B. Lu, H. Wang, J. Zhao, Q. Cai, New Journal of Chemistry
2017, 41, 387-392.
Q. He, J. W. O'Brien, K. A. Kitselman, L. E. Tompkins, G. C. T. Curtis,
F. M. Kerton, Catalysis Science & Technology 2014, 4, 1513-1528.
H. Koinuma, H. Hirai, Die Makromolekulare Chemie 1977, 178, 241-
246.
[2]
[3]
a) D. J. Darensbourg, W. Choi, P. Ganguly, C. P. Richers,
Macromolecules 2006, 39, 4374-4379; b) D. J. Darensbourg, A. I.
Moncada, Macromolecules 2009, 42, 4063-4070; c) D. J.
Darensbourg, A. I. Moncada, Macromolecules 2010, 43, 5996-6003;
[4]
[5]
[6]
d) F. Chen, N. Liu, B. Dai, ACS Sustainable Chemistry
&
Engineering 2017, 5, 9065-9075; e) J. Rintjema, W. Guo, E. Martin,
E. C. Escudero-Adán, A. W. Kleij, Chemistry – A European Journal
2015, 21, 10754-10762; f) M. Taherimehr, J. P. C. C. Sertã, A. W.
This article is protected by copyright. All rights reserved.