A.Yu. Belik, A.Yu. Rybkin, N.S. Goryachev et al.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 260 (2021) 119885
[11] A.I. Kotelnikov, A.Y. Rybkin, E.A. Khakina, A.B. Kornev, A.V. Barinov, N.S.
Goryachev, et al., Hybrid photoactive fullerene derivative–ruboxyl
nanostructures for photodynamic therapy, Org. Biomol. Chem. 11 (2013)
approach could be used for the creation of inexpensive type I pho-
tosensitizers, highly effective for the treatment of hypoxic tumors.
[12] A.Y. Rybkin, A.Y. Belik, N.S. Goryachev, P.A. Mikhaylov, O.A. Kraevaya, N.V.
Filatova, et al., Self-assembling nanostructures of water-soluble fullerene –
chlorin e6 dyads: Synthesis, photophysical properties, and photodynamic
CRediT authorship contribution statement
activity,
Dye
Pigment
108411
(2020),
A.Yu. Belik: Supervision, Validation, Writing - original draft,
Writing - review & editing. A.Yu. Rybkin: Investigation, Methodol-
ogy, Writing - original draft. N.S. Goryachev: Investigation, Data
curation, Formal analysis. A.P. Sadkov: Investigation. N.V. Fila-
tova: Investigation. A.G. Buyanovskaya: Investigation. V.N. Tala-
nova: Investigation. Z.S. Klemenkova: Investigation, Validation.
V.S. Romanova: Conceptualization, Investigation. M.O. Koifman:
Supervision, Investigation. A.A. Terentiev: Investigation, Valida-
tion. A.I. Kotelnikov: Conceptualization, Methodology, Validation.
[13] D. Kuciauskas, S. Lin, G.R. Seely, A.L. Moore, T.a. Moore, D. Gust, et al., Energy
and photoinduced electron transfer in porphyrinꢁfullerene dyads, J. Phys.
[14] E. Önal, S.Z. Topal, I. Fidan, S. Berber, F. Dumoulin, C. Hirel, Structure-
photoproperties relationship investigation of the singlet oxygen formation in
[15] M.B. Ballatore, M.B. Spesia, M.E. Milanesio, E.N. Durantini, Synthesis,
spectroscopic properties and photodynamic activity of porphyrin-fullerene
C60 dyads with application in the photodynamic inactivation of
Staphylococcus aureus, Eur. J. Med. Chem. 83 (2014) 685–694, https://doi.
[16] C. Zhou, Q. Liu, W. Xu, C. Wang, X. Fang, A water-soluble C60-porphyrin
compound for highly efficient DNA photocleavage, Chem. Commun. (Camb.)
[17] F. Wang, X. Cui, Z. Lou, J. Zhao, M. Bao, X. Li, Switching of the triplet excited
state of rhodamine-C 60 dyads, Chem. Commun. 50 (2014) 15627–15630,
Declaration of Competing Interest
The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
[18] R. Yin, M. Wang, Y.-Y.Y. Huang, H.-C.C. Huang, P. Avci, L.Y. Chiang, et al.,
Photodynamic therapy with decacationic [60]fullerene monoadducts: Effect of
a light absorbing electron-donor antenna and micellar formulation, Nanomed.
Acknowledgments
Studies were funded by the Ministry of Science and Education
of the Russian Federation (State task No AAAA-A19-
119112590105-7).
[19] L.Y. Chiang, P.a. Padmawar, J.E. Rogers-Haley, G. So, T. Canteenwala, S. Thota,
et al., Synthesis and characterization of highly photoresponsive fullerenyl
dyads with
a close chromophore antenna-C(60) contact and effective
photodynamic potential, J. Mater. Chem. 2010;20:5280–93. doi:10.1039/
C0JM00037J.
[20] F.M. Karmova, V.S. Lebedeva, A.F. Mironov, Fullerene-containing porphyrins:
Synthesis and potential practical applications, Russ. J. Gen. Chem. 86 (2016)
[21] Q. Li, C. Huang, L. Liu, R. Hu, J. Qu, Enhancing type i photochemistry in
photodynamic therapy under near infrared light by using antennae-fullerene
Appendix A. Supplementary material
Supplementary data to this article can be found online at
[22] A.P. Castano, T.N. Demidova, M.R. Hamblin, Mechanisms in photodynamic
therapy: part one—photosensitizers, photochemistry and cellular localization,
[23] V.S. Romanova, V.A. Tsyryapkin, Y.I. Lyakhovetsky, Z.N. Parnes, M.E. Vol’pin,
Addition of amino acids and dipeptides to fullerene C60 giving rise to
[24] E.I. Pochkaeva, N.E. Podolsky, D.N. Zakusilo, A.V. Petrov, N.A. Charykov, T.D.
Vlasov, et al., Fullerene derivatives with amino acids, peptides and proteins:
From synthesis to biomedical application, Prog. Solid State Chem. 57 (2020),
[25] R.A. Kotelnikova, A.I. Kotelnikov, G.N. Bogdanov, V.S. Romanova, E.F.
Kuleshova, Z.N. Parnes, et al., Membranotropic properties of the water
soluble amino acid and peptide derivatives of fullerene C 60, FEBS Lett. 389
[26] R.A. Kotelnikova, G.N. Bogdanov, E.C. Frog, A.I. Kotelnikov, V.N. Shtolko, V.S.
Romanova, et al., Nanobionics of pharmacologically active derivatives of
[27] R.A. Kotel’nikova, Faingol’d II, D.A. Poletaeva, D.V. Mishchenko, V.S. Romanova,
V.N. Shtol’ko, et al., Antioxidant properties of water soluble amino acid
derivatives of fullerenes and their role in the inhibition of herpes virus
infection, Russ. Chem. Bull. Int. Ed. 2011;60:1172–6.
[28] V.V. Grigoriev, L.N. Petrova, T.A. Ivanova, R.A. Kotel’nikova, G.N. Bogdanov, D.A.
Poletayeva, et al., Study of the neuroprotective action of hybrid structures
based on fullerene C60, Biol. Bull. 2011;38:125–31. doi:10.1134/
S1062359011020038.
[29] Kotel’nikova RA, Grigoriev V V, Smolina A V, Faingold II, Mishchenko D V,
Van’kin GI, et al. Design of a hybrid nanostructure based on fullerene C60 and
biologically active substance for modeling physiological properties of
compounds. Russ Chem Bull 2014;63:2375–82. doi:10.1007/s11172-014-
0750-0.
[30] Andreev SM, Babakhin AA, Petrukhina AO, Romanova VS, Parnes ZN, Petrov R
V. Immunogenic and allergenic properties of fulleren conjugates with
aminoacids and proteins. Dokl Biochem Proc Acad Sci USSR, Biochem Sect n.
d.;370:4–7.
References
[1] S.S. Lucky, K.C. Soo, Y. Zhang, Nanoparticles in photodynamic therapy, Chem.
[2] D.E.J.G.J. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer,
[3] A. Juzeniene, Chlorin e6-based photosensitizers for photodynamic therapy and
photodiagnosis, Photodiagnosis Photodyn. Ther. 6 (2009) 94–96, https://doi.
[4] E. Zenkevich, E. Sagun, V. Knyukshto, A. Shulga, A. Mironov, O. Efremova, et al.,
Photophysical and photochemical properties of potential porphyrin and
chlorin photosensitizers for PDT, J. Photochem. Photobiol. B Biol. 33 (1996)
[6] A.V. Barinov, N.S. Goryachev, D.A. Poletaeva, A.Y. Rybkin, A.B. Kornev, P.A.
Troshin, et al., Photodynamic activity of hybrid nanostructure on the basis of
polycationic fullerene derivative and xanthene dye eosine Y, Nanotechnologies
[7] A.I. Kotel’nikov, A.Y. Rybkin, N.S. Goryachev, A.Y. Belik, P.A. Troshin, Spectral
properties and photodynamic activity of complexes of polycationic derivative
of fullerene C60 with xanthene dye fluorescein, Opt. Spectrosc. (English Transl
Opt i Spektrosk 2016;120. doi:10.1134/S0030400X16030152.
[8] A.Y. Belik, A.Y. Rybkin, I.I. Voronov, N.S. Goryachev, D. Volyniuk, J.V.
Grazulevicius, et al., Non-covalent complexes of polycationic fullerene C60
derivative with xanthene dyes – Spectral and photochemical properties in
[9] A.Y. Belik, P.A. Mikhailov, O.A. Kraevaya, A.Y. Rybkin, E.A. Khakina, N.S.
Goryachev, et al., Synthesis, photophysical properties, and photochemical
activity of the water-soluble dyad based on fullerene C 60 and chlorin e 6
[10] A.Y. Rybkin, A.Y. Belik, O.A. Kraevaya, E.A. Khakina, A.V. Zhilenkov, N.S.
Goryachev, et al., Covalently linked water-soluble fullerene–fluorescein dyads
as highly efficient photosensitizers: Synthesis, photophysical properties and
[31] I.M. Andreev, V.S. Romanova, A.O. Petrukhina, S.M. Andreev, Amino-acid
derivatives of fullerene C60 behave as lipophilic ions penetrating through
9