J. Guay, M. Callejo, M. M. Miller, R. M. Lawrence, J.
Banville, J. Guy, B. D. Maxwell, E. S. Priestley, A.
Marinier, R. R. Wexler, M. Bouvier, D. A. Gordon, W. A.
Schumacher, J. Yang, Sci. Transl. Med. 2017, 9, eaaf5294.
a) S. E. Kimmel, B. French, S. E. Kasner, J. A. Johnson, J.
L. Anderson, B. F. Gage, Y. D. Rosenberg, C. S. Eby, R.
A. Madigan, R. B. McBane, S. Z. Abdel-Rahman, S. M.
Stevens, S. Yale, E. R. Mohler, M. C. Fang, V. Shah, R. B.
Horenstein, N. A. Limdi, J. A. S. Muldowney, J. Gujral, P.
Delafontaine, R. J. Desnick, T. L. Ortel, H. H. Billett, R. C.
Pendleton, N. L. Geller, J. L. Halperin, S. Z. Goldhaber,
M. D. Caldwell, R. M. Califf, J. H. Ellenberg, N. Engl. J.
Med. 2013, 369, 2283-2293; b) T. I. Verhoef, G. Ragia, A.
de Boer, R. Barallon, G. Kolovou, V. Kolovou, S.
Konstantinides, S. Le Cessie, E. Maltezos, F. J. M. van der
Meer, W. K. Redekop, M. Remkes, F. R. Rosendaal, R. M.
F. van Schie, A. Tavridou, D. Tziakas, M. Wadelius, V. G.
Manolopoulos, A. H. Maitland-van der Zee, N. Engl. J.
Med. 2013, 369, 2304-2312.
a) J.-K. Tie, D.-Y. Jin, K. Tie, D. W. Stafford, J. Thromb.
Haemost. 2013, 11, 1556-1564; b) S. Rost, A. Fregin, V.
Ivaskevicius, E. Conzelmann, K. Hörtnagel, H.-J. Pelz, K.
Lappegard, E. Seifried, I. Scharrer, E. G. D. Tuddenham,
C. R. Müller, T. M. Strom, J. Oldenburg, Nature 2004,
427, 537.
a) T. A. Reekie, C. M. Williams, L. M. Rendina, M.
Kassiou, J. Med. Chem., 2019, 62, 1078–1095; b) K. F.
Biegasiewicz, J. R. Griffiths, G. P. Savage, J. Tsanaktsidis,
R. Priefer, Chem. Rev. 2015, 115, 6719-6745; c) G. W.
Griffin, A. P. Marchand, Chem. Rev. 1989, 89, 997-1010;
d) G. M. Locke, S. S. R. Bernhard, M. O. Senge, Chem.
Eur. J. 2018, DOI: 10.1002/chem.201804225.
P. E. Eaton, Angew. Chem. Int. Ed. 1992, 31, 1421-1436.
a) B. A. Chalmers, H. Xing, S. Houston, C. Clark, S.
Ghassabian, A. Kuo, B. Cao, A. Reitsma, C.-E. P. Murray,
J. E. Stok, G. M. Boyle, C. J. Pierce, S. W. Littler, D. A.
Winkler, P. V. Bernhardt, C. Pasay, J. J. De Voss, J.
McCarthy, P. G. Parsons, G. H. Walter, M. T. Smith, H.
M. Cooper, S. K. Nilsson, J. Tsanaktsidis, G. P. Savage, C.
M. Williams, Angew. Chem. Int. Ed. 2016, 55, 3580-3585;
b) S. D. Houston, B. A. Chalmers, G. P. Savage, C. M.
Williams, Org. Biomol. Chem., 2019, 17, 1067–1070.
A. S. Mahadevi, G. N. Sastry, Chem. Rev. 2013, 113,
2100-2138.
J. E. Stok, S. Chow, E. H. Krenske, C. Farfan Soto, C.
Matyas, R. A. Poirier, C. M. Williams, J. J. De Voss,
Chem. Eur. J. 2016, 22, 4408-4412.
H. Xing, S. D. Houston, X. Chen, S. Ghassabian, T.
Fahrenhorst-Jones, A. Kuo, C.-E. P. Murray, K.-A. Conn,
K. N. Jaeschke, D.-Y. Jin, C. Pasay, P. V. Bernhardt, J. M.
Burns, J. Tsanaktsidis, G. P. Savage, G. M. Boyle, J. J. De
Voss, J. McCarthy, G. H. Walter, T. H. J. Burne, M. T.
Smith, J.-K. Tie, C. M. Williams, Chem. Eur. J., 2019, 25,
2729 – 2734.
which only differs from warfarin by the inclusion of a p-nitro
group on the phenyl ring, but is much more active than
warfarin.24 Furthermore, preventing the 4-hydroxycoumarin and
ketone moieties from undergoing enolization was not tolerated,
as demonstrated by the PTAD adduct 15, which was 13-fold less
active than COT-warfarin (2).
7.
In summary, π-character contained within the eastern portion,
whether aromatic of alkenic, seems essential to mimic the
activity of warfarin, as demonstrated by the decreased VKOR
inhibition observed for both warfarin analogues with full
annulene saturation. Activity against VKOR was enhanced by
replacing the phenyl ring for COT as previously reported, a
modification that both increased steric bulk and modulated π-
character from aromatic to non-aromatic, an improvement which
is likely also attributed to the dynamic equilibrium of COT.14
Overall, modifications of the warfarin scaffold continue to reveal
inhibition improvements and subtilties associated with VKOR,
and underpin the importance of developing phenyl ring
(bio)isosteres, or (bio)motifs, capable of conferring suitable π-
character.
8.
9.
Acknowledgements
The authors thank the University of Queensland (UQ) and the
CSIRO (Melbourne) for financial support. C.M.W. gratefully
acknowledges the Department of Agriculture and Water Resources
for financial support (CT-06), and The Australian Research Council
for funding (DP180103004) and a Future Fellowship award (grant
number FT110100851). Jian-Ke Tie gratefully acknowledges
financial support from the National Heart, Lung and Blood Institute,
National Institutes of Health, USA (HL131690).
10.
11.
Conflicts of Interest
G. P. S. and C. M. W. have formal and informal commercial
relationships with companies developing and supplying cubane
intermediates.
Supplementary Data
Supplementary data for this article, which includes
experimental procedures and copies of NMR spectra, can be
found online at XXXXXX.
12.
13.
References
1.
2.
3.
a) D. Wardrop, D. Keeling, Br. J. Haematol. 2008, 141,
757-763; b) K. P. Link, Circulation 1959, 19, 97-107.
H. Moualla, D. Garcia, Thromb. Haemost. 2011, 128, 210-
215.
a) Institute for Safe Medication Practices (2012)
Anticoagulants the Leading Reported Drug Risk in 2011.
L. Navarro, J. M. Cesara, M. A. Fernàndez, J. Fontcuberta,
J. C. Reverter, J. Gol-Freixa, Rev. Esp. Cardiol. 2007, 60,
1226-1232; c) K. Lund, D. Gaffney, R. Spooner, A. M.
Etherington, P. Tansey, R. C. Tait, Br. J. Haematol. 2012,
158, 256-261.
14.
15.
S. D. Houston, H. Xing, P. V. Bernhardt, T. J. Vanden
Berg, J. Tsanaktsidis, G. P. Savage, C. M. Williams, Chem.
Eur. J., 2019, 25, 2735 – 2739.
H. Kawamoto, H. Nakashima, T. Kato, S. Arai, K. Kamata,
Y. Iwasawa, Tetrahedron 2001, 57, 981-986.
J. K. Tie, D. W. Stafford, in Methods in Enzymology, Vol.
584 (Ed.: M. H. Gelb), Academic Press, 2017, pp. 349-
394.
16.
17.
4.
5.
I. Zineh, M. Pacanowski, J. Woodcock, N. Engl. J. Med.
2013, 369, 2273-2275.
a) K. J. Czogalla, A. Biswas, K. Höning, V. Hornung, K.
Liphardt, M. Watzka, J. Oldenburg, Nat. Struct. Mol. Biol.
2016, 24, 77; b) G. Shen, W. Cui, H. Zhang, F. Zhou, W.
Huang, Q. Liu, Y. Yang, S. Li, G. R. Bowman, J. E.
Sadler, M. L. Gross, W. Li, Nat. Struct. Mol. Biol. 2016,
24, 69; c) T. Li, C.-Y. Chang, D.-Y. Jin, P.-J. Lin, A.
Khvorova, D. W. Stafford, Nature 2004, 427, 541.
P. C. Wong, D. Seiffert, J. E. Bird, C. A. Watson, J. S.
Bostwick, M. Giancarli, N. Allegretto, J. Hua, D. Harden,
18.
19.
20.
M. J. Falkiner, S. W. Littler, K. J. McRae, G. P. Savage, J.
Tsanaktsidis, Org. Process Res. Dev. 2013, 17, 1503-1509.
P. E. Eaton, N. Nordari, J. Tsanaktsidis, S. P. Upadhyaya,
Synthesis 1995, 501-502.
a) P. W. Moore, C. D. G. Read, P. V. Bernhardt, C. M.
Williams, Chem. Eur. J. 2018, 24, 4556-4561; b) T. J.
Zerk, P. W. Moore, J. S. Harbort, S. Chow, L. Byrne, G. A.
Koutsantonis, J. R. Harmer, M. Martínez, C. M. Williams,
6.