Journal of the American Chemical Society
Page 8 of 9
(
9) (a) Li, W.-J.; Wang, W.; Wang, X.-Q.; Li, M.; Ke, Y.; Yao, R.; Wen, J.;
dendrimers with fourth-generation mechanically interlocked
branches. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 5597-5601.
(14) (a) Fan, C.; Wu, W.; Chruma, J. J.; Zhao, J.; Yang, C. Enhanced
triplet–triplet energy transfer and upconversion fluorescence
through host–guest complexation. J. Am. Chem. Soc. 2016, 138,
15405-15412. (b) Cekli, S.; Winkel, R. W.; Alarousu, E.; Mohammed,
O. F.; Schanze, K. S. Triplet excited state properties in variable gap
π-conjugated donor–acceptor–donor chromophores. Chem. Sci.
2016, 7, 3621-3631.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Yin, G.-Q.; Jiang, B.; Li, X.; Yin, P.; Yang, H.-B. Daisy chain dendrimers:
integrated mechanically interlocked molecules with stimuli-in-
duced dimension modulation feature. J. Am. Chem. Soc. 2020, 142,
8
473-8482. (b) Wang, X.-Q.; Wang, W.; Li, W.-J.; Chen, L.-J.; Yao, R.;
Yin, G.-Q.; Wang, Y.-X.; Zhang, Y.; Huang, J.; Tan, H.; Yu, Y.; Li, X.; Xu,
L.; Yang, H.-B. Dual stimuli-responsive rotaxane-branched den-
drimers with reversible dimension modulation. Nat. Commun.
2
018, 9, 3190.
10) (a) Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers:
from molecular design to applications. Chem. Soc. Rev. 2013, 42,
323-5351. (b) Howlader, P.; Mondal, B.; Purba, P. C.; Zangrando,
(
(15) (a) Chan, A. K.-W.; Ng, M.; Wong, Y.-C.; Chan, M.-Y.; Wong, W.-
T.; Yam, V. W.-W. Synthesis and characterization of luminescent cy-
clometalated platinum(II) complexes with tunable emissive colors
and studies of their application in organic memories and organic
light-emitting devices. J. Am. Chem. Soc. 2017, 139, 10750-10761.
(b) Wang, X.; Han, Y.; Liu, Y.; Zou, G.; Gao, Z.; Wang, F. Cooperative
supramolecular polymerization of fluorescent platinum acetylides
for optical waveguide applications. Angew. Chem. Int. Ed. 2017, 56,
12466-12470. (c) Furusho, Y.; Tanaka, Y.; Yashima, E. Double helix-
to-double helix transformation, using platinum(II) acetylide com-
plexes as surrogate linkers, Org. Lett. 2017, 8, 2583–2586. (d) Ito,
H.; Ikeda, M.; Hasegawa, T.; Furusho, Y.; Yashima, E. Synthesis of
complementary double-stranded helical oligomers through chiral
and achiral amidinium-carboxylate salt bridges and chiral amplifi-
cation in their double-helix formation, J. Am. Chem. Soc. 2011, 133,
3419–3432. (e) Leininger, S.; Stang, P. J.; Huang, S. Synthesis and
characterization of organoplatinum dendrimers with 1, 3, 5-tri-
ethynylbenzene building blocks. Organometallics 1998, 17, 3981-
3987. (f) Wang, W.; Yang, H.-B.; Linear neutral platinum–acetylide
moiety: beyond the links. Chem. Commun. 2014, 50, 5171-5186.
(16) (a) Kim, S.; Fujitsuka, M.; Majima, T. Photochemistry of singlet
oxygen sensor green. J. Phys. Chem. B 2013, 117, 13985−13992. (b)
Prasad, A.; Sedlářová, M.; Pospíšil, P. Singlet oxygen imaging using
fluorescent probe singlet oxygen sensor green in photosynthetic
organisms. Sci. Rep. 2018, 8, 13685. (c) Yu, G.; Zhu, B.; Shao, L.;
Zhou, J.; Saha, M. L.; Shi, B.; Zhang, Z.; Hong, T.; Li, S.; Chen, X.; Stang,
P. J. Host−guest complexation-mediated codelivery of anticancer
drug and photosensitizer for cancer photochemotherapy. Proc.
Natl. Acad. Sci. U.S.A., 2019, 116, 6618-6623. (d) Zhao, Y.; Farrer, N.
J.; Li, H.; Butler, J. S.; McQuitty, R. J.; Habtemariam, A.; Wang, F.; Sad-
ler, P. J. De novo generation of singlet oxygen and ammine ligands
by photoactivation of a platinum anticancer complex. Angew. Chem.
Int. Ed., 2013, 52, 13633-13637. (e) Chen, Y.-Z.; Wang, Z. U.; Wang,
H.; Lu, J.; Yu, S.-H.; Jiang, H.-L. Singlet oxygen-engaged selective
photo-oxidation over Pt nanocrystals/porphyrinic MOF: the roles
of photothermal effect and Pt electronic state. J. Am. Chem. Soc.,
2017, 139, 2035-2044. (f) Chen, L.-J.; Chen, S.; Qin, Y.; Xu, L.; Yin,
G.-Q.; Zhu, J.-L.; Zhu, F.-F.; Zheng, W.; Li, X.; Yang, H.-B. Construction
of porphyrin-containing metallacycle with improved stability and
activity within mesoporous carbon. J. Am. Chem. Soc., 2018, 140,
5049-5052. (g) Qin, Y.; Chen, L.-J.; Dong, F.; Jiang, S.-T.; Yin, G.-Q.;
Li, X.; Tian, Y.; Yang, H.-B. Light-controlled generation of singlet ox-
ygen within a discrete dual-stage metallacycle for cancer therapy.
J. Am. Chem. Soc., 2019, 141, 8943-8950.
5
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
E.; Mukherjee, P. S. Self-assembled Pd(II) barrels as containers for
transient merocyanine form and reverse thermochromism of
spiropyran. J. Am. Chem. Soc. 2018, 140, 7952-7960. (c) Acharyya,
K.; Bhattacharyya, S.; Sepehrpour, H.; Chakraborty, S.; Lu, S.; Shi, B.;
Li, X.; Mukherjee, P. S.; Stang, P. J. Self-assembled fluorescent Pt(II)
metallacycles as artificial light-harvesting systems. J. Am. Chem. Soc.
2019, 141, 4565–14569. (d) Hola, E.; Ortyl, J.; Jankowska, M.; Pilch,
M.; Galek, M.; Morlet-Savary, F.; Graff, B.; Dietlinc, C.; Lalevée, J. New
bimolecular photoinitiating systems based on terphenyl
derivatives as highly efficient photosensitizers for 3D printing
application. Polym. Chem. 2020,11, 922-935. (e) Shao, L.; Pan, Y.;
Hua, B.; Xu, S.; Yu, G.; Wang, M.; Liu, B.; Huang, F. Constructing
adaptive photosensitizers via supramolecular modification based
on pillararene host–guest interactions. Angew. Chem. Int. Ed. 2020,
5
9, 11779-11783. (f) Li, D.-H.; Schreiber, C. L.; Smith, B. D. Sterically
shielded heptamethine cyanine dyes for bioconjugation and high
performance near-infrared fluorescence imaging. Angew. Chem. Int.
Ed. 2020, 59, 12154–12161. (g) Wu, W.; Mao, D.; Xu, S.; Kenry, F.;
Hu, Li, X.; Kong, D.; Liu, B. Polymerization-enhanced photosensiti-
zation. Chem 2018, 4, 1937-1951. (h) Liu, S.; Zhang, H.; Li, Y.; Liu, J.;
Du, L.; Chen, M.; Kwok, R. T. K.; Lam, J. W. Y.; Phillips, D. L.; Tang, B.
Z. Strategies to enhance the photosensitization: polymerization
and the donor–acceptor even–odd effect. Angew. Chem. Int. Ed.
2
018, 57, 15189-15193. (i) Peck, E. M.; Collins, C. G.; Smith, B. D.
Thiosquaraine rotaxanes: synthesis, dynamic structure, and
oxygen photosensitization. Org. Lett. 2013, 15, 2762–2765.
(
Cornil, J.; Bazzini, C.; Caronna, T.; Tubino, R.; Meinardi, F.; Shuai, Z.;
Brédas, J.-L. Intersystem crossing processes in nonplanar aromatic
heterocyclic molecules. J. Phys. Chem. A 2007, 111, 10490-10499.
11) (a) Schmidt, K.; Brovelli, S.; Coropceanu, V.; Beljonne, D.;
(b) Espinoza, C.; Trigos, Á .; Medina, M. E. Theoretical study on the
photosensitizer mechanism of phenalenone in aqueous and lipid
media. J. Phys. Chem. A 2016, 120, 6103-6110. (c) Jin, J.; Zhu, Y.;
Zhang, Z.; Zhang, W. Enhancing the efficacy of photodynamic ther-
apy through a porphyrin/POSS alternating copolymer. Angew.
Chem. Int. Ed. 2018, 57, 16354-16358. (d) Wang, Z.; Zhao, J.; Barbon,
A.; Toffoletti, A.; Liu, Y.; An, Y.; Xu, L.; Karatay, A.; Yaglioglu, H. G.;
Yildiz, E. A.; Hayvali, M. Radical-enhanced intersystem crossing in
new bodipy derivatives and application for efficient triplet–triplet
annihilation upconversion. J. Am. Chem. Soc. 2017, 139, 7831-7842.
(
12) (a) Hou, Y.; Liu, Q.; Zhao, J. An exceptionally long-lived triplet
state of red light-absorbing compact phenothiazine-styrylBodipy
electron donor/acceptor dyads: a better alternative to the heavy
atom-effect? Chem. Commun. 2020, 56, 1721-1724. (b) Yu, Q.;
Huang, T.; Liu, C.; Zhao, M.; Xie, M.; Li, G.; Liu, S.; Huang, W.; Zhao,
Q. Oxygen self-sufficient NIR-activatable liposomes for tumor hy-
poxia regulation and photodynamic therapy. Chem. Sci. 2019, 10,
9091-9098. (c) Karges, J.; Basu, U.; Blacque, O.; Chao, H.; Gasser, G.
Polymeric encapsulation of novel homoleptic bis(dipyrrinato)
zinc(II) complexes with long lifetimes for applications as photody-
namic therapy photosensitisers. Angew. Chem. Int. Ed. 2019, 58,
(17) (a) Marques, M. A. L.; Ullrich, C. A.; Nogueira, F.; Rubio, A.;
Burke, K.; Gross, E. K. U. Time-dependent density functional theory
(Springer: Berlin, Germany, 2006, 706). (b) Runge, E.; Gross, E. K.
U. Density-functional theory for time-dependent systems. Phys. Rev.
Lett. 1984, 52, 997−1000. (c) Schweitzer, C.; Schmid, R. Physical
mechanisms of generation and deactivation of singlet oxygen.
Chem. Rev. 2003, 103, 1685−1757.
(18) (a) He, Y.-Q.; Fudickar, W.; Tang, J.-H.; Wang, H.; Li, X.; Han, J.;
Wang, Z.; Liu, M.; Zhong, Y.-W.; Linker, T.; Stang, P. J. Capture and
release of singlet oxygen in coordination-driven self-assembled or-
ganoplatinum(II) metallacycles. J. Am. Chem. Soc. 2020, 142, 2601-
2608; (b) Wang, Y.-X.; Zhang, Y.-M.; Liu, Y. Photolysis of an am-
phiphilic assembly by calixarene-induced aggregation. J. Am. Chem.
Soc. 2015, 137, 4543-4549. (c) Preston, D.; Sutton, J. J.; Gordon, K.
C.; Crowley, J. D. A nona-nuclear heterometallic Pd3Pt6 “donut”-
shaped cage: molecular recognition and photocatalysis. Angew.
14334-14340. (d) Gorman, A.; Killoran, J.; O’Shea, C.; Kenna, T.; Gal-
lagher, W. M.; O’Shea, D. F. In vitro demonstration of the heavy-
atom effect for photodynamic therapy. J. Am. Chem. Soc. 2004, 126,
10619-10631.
(
13) Wang, W.; Chen, L.-J.; Wang, X.-Q.; Sun, B.; Li, X.; Zhang, Y.; Shi,
J.; Yu, Y.; Zhang, L.; Liu, M.; Yang, H.-B. Organometallic rotaxane
ACS Paragon Plus Environment