Chemistry Letters 2000
1209
for hydroxyl protons can be assigned. This is consistent with
the structure of p-tert-butylcalix[6]-1,4-benzocrown-4-2,3-
crown-5 and not with other structures such as p-tert-butylcal-
ix[6]-1,4-benzocrown-4-2,6-crown-5, which should have four
singlets for p-tert-butyl (1:2:2:1) or p-tert-butylcalix[6]-1,4-
benzocrown-4-2,5-crown-5 which should have three pairs dou-
blets (1:1:1) for methylene protons. The cone (u,u,u,u,u,u)
conformation of 2b at room temperature is easily deduced from
the methylene protons in calixarene skeleton showing four
pairs of doublets in a ratio of 1:2:2:1.
Examination of the CPK molecular models reveals that
compounds 2a, 2b are well preorganized for binding cations.
1,4-p-tert-Butylcalix[6]crown-4 1a and 1,4-p-tert-butylcalix-
[6]-benzocrown-4 1b are used as reference compounds.
Percentage extraction of hosts 2a, 2b towards several picrate
salts from water into CHCl3 at 25 °C are summarized in Table
1. Comparing with compounds 1a and 1b, the extraction level
of p-tert-butylcalix[6]-1,4-benzocrown-4-2,3-crown-5 (2b) is
much higher, this can be attributed to the beneficial influence of
a second bridging subunit generally increases the rigidity of
calix[6]arene framework and compound 2b adopts a cone con-
formation at the room temperature. Besides, the seletivity
towards the alkali metal ions for compounds 2a and 2b is also
different for that of compounds 1a and 1b. This may be attrib-
uted to two polyethylene glycol chains co-operation effect.
5
6
Z. Asfari, S. Wenger, and J. Vicens, Pure Appl. Chem., 67,
1037 (1995).
A. Arduini, L. Domiano, A. Pochini, R. Ungaro, F.
Ugozzoli, O. Struck, W. Verboom, and D. N. Reinhoudt,
Tetrahedron, 53, 3767 (1997).
7
8
9
G. Ferguson, A.J. Lough, A. Notti, and S. Pappalardo, J.
Org. Chem., 63, 9703 (1998).
Z. Asfari, P. Thuery, M. Nierlich, and J. Vicens.
Tetrahedron Lett., 40, 691 (1999).
L. Nicod, S. Pellet-Rostaing, F. Chirtry, M. Lemaire, H.
Barnier, and V. Federici, Tetrahedron Lett., 39, 4993
(1998).
10 V. Lamare, J.F. Dozol, S. Fuangswassdi, F.A. Neu, P.
Thuery, M. Nierlich, Z. Asfari, and J. Vicens, J. Chem.
Soc., Perkin Trans. 2, 1999, 271.
11 Z. Asfari, V. Lamare, J.F. Dozol, and J. Vicens,
Tetrahedron Lett., 40, 691 (1999).
12 D. Thuery, M. Nierlich, J. C. Bryan, V. Lamare, J. F.
Dozol, Z. Asfari, and J. Vicens, J. Chem. Soc., Dalton
Trans. 1997, 4191.
13 H. H. Zeng, and B. Dureauit, Talanta, 46, 1485 (1998).
14 J. S. Kim, W. K. Lee, D. Y. Ra, Y. I. Lee, W. K. Choi, K.
W. Lee, and W. Z. Oh, Microchemical J., 59, 464 (1998).
15 Y. Y. Chen, F. F. Yang, and X. R. Lu, Tetrahedron Lett.,
41, 1571 (2000).
16 M. T. Blanda, D. B. Farmer, J. S. Brodhelt, and B. J.
Goolsby, J. Am. Chem. Soc., 122, 1486 (2000).
17 G. H. Lein and D. J. Cram, J. Am. Chem. Soc., 107, 448
(1985).
18 1H NMR ( 300 MHz, CDCl3): 2a.1.17(s, 9H, C(CH3)3),
1.24(s, 18H, C(CH3)3), 1.26(s, 18H, C(CH3)3), 1.32(s, 9H,
C(CH3) 3), 2.35(t, 4H, J = 9.0 Hz, OCH2CH2), 2.70(d, 2H,
J = 10.8 Hz, OCH2CH2), 2.88(q, 4H, J = 10.5 Hz,
COCH2CH2), 3.16(q, 4H, J = 10.5 Hz, OCH2CH2), 3.31(t,
4H, J = 9.0 Hz, OCH2CH2), 3.44(d, 2H, J = 10.2Hz,
ArCH2Ar), 3.53–3.64(m, 12H, OCH2CH2 and ArCH2Ar),
3.87(d, 2H, J = 10.2 Hz, ArCH2Ar), 4.08(d, 2H, J = 13.5
Hz, ArCH2Ar), 4.17(d, 2H, J = 13.5 Hz, ArCH2Ar), 4.47(d,
2H, J = 17.7 Hz, ArCH2Ar), 6.54(d, 2H, J = 2.7 Hz, ArH),
6.72 (d, 4H, J = 2.7 Hz, ArH), 6.95(d, 4H, J = 2.7 Hz,
ArH), 7.14(s, 2H, ArOH), 7.34(d, 2H, J = 2.7 Hz, ArH).
MS(FAB): 1,244 (M+, 20%). Anal. Calcd for C80H108O11:
C, 77.13; H, 8.74%. Found: C, 77.15; H, 8.71%.
2b. 1.16(s, 18H, C(CH3)3), 1.22(s, 18H, C(CH3)3), 1.26(s,
18H, C(CH3)3), 2.44(t, 2H, J = 9.0 Hz, OCH2CH2), 2.73(q,
4H, J = 10.2 Hz, OCH2CH2), 2.92(q, 4H, J = 10.2 Hz,
OCH2CH2), 3.11(t, 4H, J = 9.0 Hz, OCH2CH2), 3.26-
3.59(m, 11H, OCH2CH2 and ArCH2Ar), 3.82(d, 1H, J =
10.2 Hz, ArCH2Ar), 3.90(d, 1H, J = 10.2 Hz, ArCH2Ar),
4.03(d, 2H, J = 17.4 Hz, ArCH2Ar), 4.14(d, 2H, J = 13.8
Hz, ArCH2Ar), 4.19(d, 1H, J = 12.9 Hz, ArCH2Ar), 4.34(d,
2H, J = 13.8 Hz, ArCH2Ar), 4.43(d, 2H, J = 17.4 Hz,
ArCH2Ar), 6.44(s, 4H, ArH), 6.62(d, 4H, J = 2.7 Hz),
7.05(d, 4H, J = 2.7 Hz, ArH), 7.36(d, 4H, J = 2.7 Hz,
ArH), 8.15(s, 2H, ArOH). MS(FAB): 1,293 (MH+, 10%).
Anal. Calcd for C84H108O11: C, 77.98;H, 8.41%. Found: C,
77.95; H,8.45%.
Financial support from the Natural Science Foundation of
China is gratefully acknowledged.
References and Notes
1 H. Yamamoto and S. Shinkai, Chem. Lett., 1994, 1115.
2
Z. Asfari, B. Pulpoka, M. Saadioui, S. Wenger, M.
Nierlich, P. Thuery, N. Reynier, J.-F. Dozol, and J. Vicens,
J. Mol. Inclusion, Recognit. Proc. 9th Int. Symp., 1998 ,
173.
3
4
A. Arduini, A. Casnati, L. Dodi, A. Pochini, and R.
Ungaro, J. Chem. Soc.,Chem. Commun., 1994, 1597.
Z. Asfari, R. Abidi, F. Arnaud, and J. Vicens, J. Inclusion.
Phenom., 3, 163 (1992).