S. Anbu, M. Kandaswamy / Polyhedron 30 (2011) 123–131
[2] M. Oivanan, S. Kuusela, H. Lonnberg, Chem. Rev. 98 (1998) 961.
131
[3] E.L. Hegg, K.A. Deal, L.L. Kiessling, J.N. Burstyn, Inorg. Chem. 36 (1997) 1715–
1718.
[4] L.S. Lerman, J. Mol. Biol. 3 (1961) 18.
[5] M.H. Klingle, G. Steinfeld, B. Kersting, Z. Naturforsch. 56b (2001) 901–907.
[6] M. Wu, D. Stoermer, T.D. Tullius, C.A. Townsend, J. Am. Chem. Soc. 122 (2000)
12884.
[7] M.C.B. Oliveira, M.S.R. Couto, P.C. Severino, T. Foppa, G.T.S. Martins, B.
Szpoganicz, R.A. Peralta, A. Neves, H. Terenzi, Polyhedron 24 (2005) 495.
[8] H.A. Avila, D.S. Sigman, L.M. Cohen, R.C. Millikan, L. Simpson, Mol. Biochem.
Parasitol. 48 (1991) 211.
[9] K.G. Ragunathan, H.J. Schneider, Angew. Chem., Int. Ed. 35 (1996) 1219.
[10] M. Roy, B. Pathak, A.K. Patra, E.D. Jemmis, M. Nethaji, A.R. Chakravarthy, Inorg.
Chem. 46 (2007) 11122.
[11] C.J. Reed, K.T. Douglas, Biochem. J. 275 (1991) 601.
[12] S. Anbu, M. Kandaswamy, P. Suthakaran, G. Murugan, Babu Varghese, J. Inorg.
Biochem. 103 (2009) 401.
[13] M.M. Meijler, O. Zelenko, D.S. Sigman, J. Am.Chem. Soc. 119 (1997) 1135.
[14] T. Oyoshi, H. Sugiyama, J. Am. Chem. Soc. 122 (2000) 6313.
[15] T.E. Goyne, D.S. Sigman, J. Am. Chem. Soc. 109 (1987) 2846.
[16] M. Kuwabara, C. Yoon, T.E. Goyne, T. Thederahn, D.S. Sigman, Biochemistry 25
(1986) 7401.
[17] M. Pitie, C.J. Burrows, B. Meunier, Nucleic Acids Res. 28 (2000) 4856.
[18] K. Zhang, Z.J. Zhong, Y. Zhang, X. You, Polyhedron 11 (1996) 1859.
[19] R. Ruiz, F. Lioret, M. Julve, J. Faus, Inorg. Chim. Acta 213 (1993) 261.
[20] S.J. Gruber, C.M. Harris, E. Sinn, Inorg. Chem. 7 (1968) 268.
[21] R.M. Countryman, W.T. Robinson, E. Sinn, Inorg. Chem. 13 (1974) 2013.
[22] W.E. Hatfield, J.A. Crissman, Inorg. Nucl. Chem. Lett. (1968) 732.
[23] M. Kuppayee, D. Kumaran, M.N. Ponnuswamy, M. Kandaswamy, M.J. Violet, K.
Chinnakali, H.-K. Fun, Acta Crystallogr., Sect. C 55 (1999) 2147–2149.
[24] M. Thirumavalavan, P. Akilan, M. Kandaswamy, Inorg. Chem. 42 (2003) 3308.
[25] M.E. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, J. Am. Chem. Soc. 76 (1954)
3047.
Fig. 13. Cleavage activity of 2 monitored by 0.8% agarose gel electrophoresis, where
[DNA] 0.2 g, 33 M (complex 2) 0.50 M and mercaptoethanol 0.71 mM. Time
course measured in 10 mM Tris buffer, pH 7.4, 37 °C, showing the disappearance of
supercoiled DNA (I) at (1) 0 min, (2) 10 min, (3) 20 min, (4) 30 min, (5) 40 min, (6)
50 min, (7) 60 min. (Gel image showing supercoiled (Form I) and nicked circular
(Form II) DNA.)
l
l
l
[26] A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am.
Chem. Soc. 111 (1989) 3051.
[27] K.D. Karlin, I. Cohenn, J.C. Hayes, A. Farooq, J. Zubieta, Inorg. Chem. 26 (1987)
147.
[28] H. Okawa, M. Tadocara, T.K. Aratake, M. Ohba, K. Shindom, M. Mitsumi, M.
Koikawa, M. Tomono, D.E. Fenton, J. Chem. Soc., Dalton Trans. (1993) 253–258.
[29] C.-T. Yang, B. Moubaraki, K.S. Murray, J.J. Vittal, J. Chem. Soc., Dalton Trans.
(2003) 880–889.
nature of the ligands, the two Cu(II) ion centers display an appro-
priate distance and angle in the cleavage process, so a synergistic
effect might exist in the system.
4. Conclusions
[30] N. Sengottuvelan, D. Saravanakumar, S. Sridevi, V. Narayanan, M.
Kandaswamy, Supramol. Chem. 16 (2004) 129.
Electrochemical studies of the mono and binuclear copper(II)
complexes 1–3 display single electron transfer quasireversible
waves. Catechol oxidation studies show that the binuclear cop-
per(II) complexes 2 and 3 show nearly 100-fold rate enhancement
of catechol oxidation compared to the mononuclear Cu(II) complex
1. The temperature dependence magnetic properties of the com-
plexes conclude that the singlet–triplet energy separation (ꢀ2J) va-
lue of complex 3 is more than that of complex 2, which suggests
that the interaction increases with increasing coplanarity of the li-
gand. The DNA binding experiments results suggests that the inter-
action of the complexes with DNA is by an intercalative mode. The
DNA cleavage studies for complexes 1–3 showed the DNA to be
cleaved through an oxidative (O2-dependent pathway) cleavage
mechanism using singlet oxygen as the reactive species, because
[31] B. Bleany, K.D. Bowers, Prog. R. Soc., Lond. Ser. A 214 (1952) 415.
[32] K. Nag, Proc. Indian Acad. Sci. (Chem. Sci.) 102 (1999) 269–282.
[33] E. Ruiz, P. Alemany, S. Alvarez, J. Cano, Inorg. Chem. 36 (1997) 3683.
[34] E. Ruiz, P. Alemany, S. Alvarez, J. Cano, J. Am. Chem. Soc. 119 (1997) 1297.
[35] M. Thirumavalavan, P. Akilan, M. Kandaswamy, Supramol. Chem. 16 (2004)
495.
[36] N.A. Rey, A. Neves, A. Bortoluzzi, C.T. Pich, H. Terenzi, Inorg. Chem. 46 (2007)
348.
[37] C. Belle, C. Beguin, I.G. Luneau, S. Hamman, C. Philouze, J.L. Pierre, F. Thomas, S.
Torelli, Inorg. Chem. 41 (2002) 479.
[38] A. Rompell, H. Fischer, D. Meiwes, K.B. Karentzopoulos, K. Diillinger, F. Tuczek,
H. Witzel, B. Krebs, J. Biol. Inorg. Chem. 4 (1999) 56.
[39] B. Peng, H. Chao, B. Sun, H. Li, F. Gao, L.-N. Ji, J. Inorg. Biochem. 100 (2006)
1487.
[40] V. Uma, M. Kanthimathi, T. Weyhermuller, B. Unni Nair, J. Inorg. Biochem. 99
(2005) 2299.
[41] P.K. Sasmal, A.K. Patra, M. Nethaji, A.R. Chakravarty, Inorg. Chem. 45 (2007)
11112.
[42] E. Nyarko, N. Hanada, A. Habib, M. Tabata, Inorg. Chim. Acta 357 (2004) 739.
[43] J.B. Lepecq, C. Paoletti, J. Mol. Biol. 27 (1967) 87.
[44] M. Lee, A.L. Rhodes, M.D. Wyatt, S. Forrow, J.A. Hartley, Biochemistry 32 (1993)
4237.
[45] Y. Zhao, J. Zhu, W. He, Z. Yang, Y. Zhu, Y. Li, J. Zhang, Z. Guo, Chem. Eur. J. 12
(2006) 6621.
[46] W. Qian, F. Gu, L. Gao, S. Feng, D. Yan, D. Liao, P. Cheng, J. Chem. Soc., Dalton
Trans. (2007) 1060–1066.
[47] J.K. Barton, A.C. Raphael, J. Am. Chem. Soc. 106 (1984) 2466.
[48] N. Grover, N. Gupta, P. Singh, H.H. Thorp, Inorg. Chem. 31 (1992) 2014.
[49] R.F. Pasternack, Chirality 15 (2003) 329.
[50] D.G. Dalgleish, M.C. Feil, A.R. Peacocke, Biopolymers 11 (1972) 2415.
[51] V.I. Ivanov, L.E. Minchenkova, A.K. Schyolkina, A.I. Poletayer, Biopolymers 12
(1973) 89.
[52] Q.L. Zhang, J.G. Liu, H. Chao, G.Q. Xue, L.N. Ji, J. Inorg. Biochem. 83 (2001) 49.
[53] H. Kishikawa, Y.P. Jiang, J. Goodisman, J.C. Dabrowiak, J. Am. Chem. Soc. 113
(1991) 5434.
L-histidine and azide ions were obviously inhibiting the cleavage
activity. In conclusion, we have performed a comparative study
of the influence of aliphatic and aromatic moieties in acyclic li-
gands on DNA cleavage activity. Cu(II) complexes with phenan-
throline based ligands display a better DNA interaction and
significantly greater chemical nuclease activity than the bipyridyl
based Cu(II) analogs.
Acknowledgements
S.A. is grateful to CSIR (SRF), New Delhi, Government of India,
for a fellowship. We thank the Department of Science and Technol-
ogy (DST-FIST), New Delhi, Government of India, for financial
support.
[54] J.A. Cowan, C. Opin, Chem. Biol. 5 (2001) 634.
[55] R. Cejudo, G. Alzuet, J. Inorg. Biochem. 100 (2006) 70.
[56] M.G. Alvarez, G. Alzuet, J. Borras, B. Macıas, A. Castineiras, Inorg. Chem. 42
(2003) 2992.
References
[1] N.H. William, B. Takasaki, M. Wall, J. Chin, J. Acc. Chem. Res. 32 (1999) 485.