p53-dependent autophagic degradation of TET2 modulates cancer therapeutic resistance
12. Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB,
Vertino PM, et al. Recognition and potential mechanisms for
replication and erasure of cytosine hydroxymethylation. Nucleic
Acids Res. 2012;40:4841–9.
27. Zhang YW, Wang Z, Xie W, Cai Y, Xia L, Easwaran H, et al.
Acetylation enhances TET2 function in protecting against
abnormal DNA methylation during oxidative stress. Mol Cell.
2017;65:323–35.
13. Inoue A, Zhang Y. Replication-dependent loss of 5-
hydroxymethylcytosine in mouse preimplantation embryos. Sci-
ence. 2011;334:194.
14. Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma
DP, Galili N, et al. Validation of a prognostic model and the
impact of mutations in patients with lower-risk myelodysplastic
syndromes. J Clin Oncol. 2012;30:3376–82.
28. Guo JY, Xia B, White E. Autophagy-mediated tumor promotion.
Cell. 2013;155:1216–9.
29. White E. Deconvoluting the context-dependent role for autophagy
in cancer. Nat Rev Cancer. 2012;12:401–10.
30. Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF.
Cancer stem cells from colorectal cancer-derived cell lines. Proc
Natl Acad Sci USA. 2010;107:3722–7.
15. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S,
Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J
Med. 2009;360:2289–301.
16. Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik
MM, et al. Detection of mutant TET2 in myeloid malignancies
other than myeloproliferative neoplasms: CMML, MDS, MDS/
MPN and AML. Leukemia. 2009;23:1343–5.
31. Boyer J, McLean EG, Aroori S, Wilson P, McCulla A, Carey PD,
et al. Characterization of p53 wild-type and null isogenic color-
ectal cancer cell lines resistant to 5-fluorouracil, oxaliplatin, and
irinotecan. Clin Cancer Res. 2004;10:2158–67.
32. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on
anticancer molecular action, toxicity and novel drug delivery
systems. J Pharm Pharmacol. 2013;65:157–70.
17. Quivoron C, Couronne L, Della Valle V, Lopez CK, Plo I,
Wagner-Ballon O, et al. TET2 inactivation results in pleiotropic
hematopoietic abnormalities in mouse and is a recurrent event
during human lymphomagenesis. Cancer Cell. 2011;20:25–38.
18. Lemonnier F, Couronne L, Parrens M, Jais JP, Travert M, Lamant
L, et al. Recurrent TET2 mutations in peripheral T-cell lympho-
mas correlate with TFH-like features and adverse clinical para-
meters. Blood. 2012;120:1466–9.
19. Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel
J, Wadleigh M, et al. Genetic characterization of TET1, TET2,
and TET3 alterations in myeloid malignancies. Blood.
2009;114:144–7.
20. Huang Y, Rao A. Connections between TET proteins and aberrant
DNA modification in cancer. Trends Genet. 2014;30:464–74.
21. Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J, et al. Tumor
development is associated with decrease of TET gene expression
and 5-methylcytosine hydroxylation. Oncogene. 2012;32:663–9.
22. Thienpont B, Steinbacher J, Zhao H, D’Anna F, Kuchnio A,
Ploumakis A, et al. Tumour hypoxia causes DNA hypermethy-
lation by reducing TET activity. Nature. 2016;537:63–8.
23. Nakagawa T, Lv L, Nakagawa M, Yu Y, Yu C, D’Alessio AC,
et al. CRL4(VprBP) E3 ligase promotes monoubiquitylation and
chromatin binding of TET dioxygenases. Mol Cell. 2015;57:247–
60.
24. An J, Gonzalez-Avalos E, Chawla A, Jeong M, Lopez-Moyado
IF, Li W, et al. Acute loss of TET function results in aggressive
myeloid cancer in mice. Nat Commun. 2015;6:10071.
25. Ko M, An J, Bandukwala HS, Chavez L, Aijo T, Pastor WA, et al.
Modulation of TET2 expression and 5-methylcytosine oxidation
by the CXXC domain protein IDAX. Nature. 2013;497:122–6.
26. Wang Y, Zhang Y. Regulation of TET protein stability by cal-
pains. Cell Rep. 2014;6:278–84.
33. Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases
and their poisoning by anticancer and antibacterial drugs. Chem
Biol. 2010;17:421–33.
34. Dunkern TR, Wedemeyer I, Baumgartner M, Fritz G, Kaina B.
Resistance of p53 knockout cells to doxorubicin is related to
reduced formation of DNA strand breaks rather than impaired
apoptotic signaling. DNA Repair. 2003;2:49–60.
35. Wang D, Lippard SJ. Cellular processing of platinum anticancer
drugs. Nat Rev Drug Discov. 2005;4:307–20.
36. Lakin ND, Jackson SP. Regulation of p53 in response to DNA
damage. Oncogene. 1999;18:7644–55.
37. Kafer GR, Li X, Horii T, Suetake I, Tajima S, Hatada I, et al. 5-
hydroxymethylcytosine marks sites of DNA damage and promotes
genome stability. Cell Rep. 2016;14:1283–92.
38. Mizushima N. Autophagy: process and function. Genes Dev.
2007;21:2861–73.
39. Muller PA, Vousden KH.Mutant p53 cancer: new functions and
therapeutic opportunities.Cancer Cell. 2014;25:304–17.
40. Liang SH, Clarke MF. Regulation of p53 localization. Eur J
Biochem. 2001;268:2779–83.
41. Boyd SD, Tsai KY, Jacks T. An intact HDM2 RING-finger
domain is required for nuclear exclusion of p53. Nat Cell Biol.
2000;2:563–8.
42. Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, et al. Loss of
5-hydroxymethylcytosine is an epigenetic hallmark of melanoma.
Cell. 2012;150:1135–46.
43. Jiang D, Wei S, Chen F, Zhang Y, Li J. TET3-mediated DNA
oxidation promotes ATR-dependent DNA damage response.
EMBO Rep. 2017;18:781–96.
44. Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J, et al.
Autophagy mediates degradation of nuclear lamina. Nature.
2015;527:105–9.