5880
H. Xia et al. / Tetrahedron Letters 48 (2007) 5877–5881
Table 1. Photophysical properties of TPB-TPA3 and TPB-TPA9
s/nsa sol
uf sol (%)
kabs/nm films
kem/nm films
ufl (%) films
b
c
kabs/nm sol
kem/nm sol
TPB-TPA3
TPB-TPA9
384
411
456
490
0.38
0.16
100
100
387
412
465
491
17.2
5.2
a Double-exponential decay.
b Quinine sulfate was used as a standard (kexc = 365 nm; uf = 0.546 in H2O).
c Determined by using an integrating sphere.
6. Schryver, F. C.; Vosch, T.; Cotlet, M.; Auweraer, M. V.;
Mllen, K.; Hofkens, J. Acc. Chem. Res. 2005, 38, 514.
7. (a) Shirota, Y. J. Mater. Chem. 2000, 10, 1; (b) Shirota, Y.
J. Mater. Chem. 2005, 15, 75; (c) Thelakkat, M. Macro-
mol. Mater. Eng. 2002, 287, 442.
interactions such as aggregates, which can be caused by
the relatively dense packing of dendrimer units in films.
The photophysical properties of TPB-TPA3 and TPB-
TPA9 are summarized in Table 1.
8. (a) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-
Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.;
Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001,
123, 4304; (b) Kuwabara, Y.; Ogawa, H.; Inada, H.;
Noma, N.; Shirota, Y. Adv. Mater. 1994, 6, 677; (c)
Sonntag, M.; Kreger, K.; Hanft, D.; Strohriegl, P.;
Setayesh, S.; de Leeuw, D. Chem. Mater. 2005, 17, 3031.
9. (a) Wei, P.; Bi, X.; Wu, Z.; Xu, Z. Org. Lett. 2005, 7, 3199;
(b) Li, J.; Liu, D.; Li, Y.; Lee, C.-S.; Kwong, H.-L.; Lee,
S.-T. Chem. Mater. 2005, 17, 1208.
In conclusion, we have synthesized two new conjugated
dendrimers bearing a triphenylamine moiety as den-
drons and 1,3,5-triphenylbenzene as a core through a
convergent synthetic strategy. These conjugated dendri-
mers exhibit similar absorption and emission behaviors
in solutions and in solid films, which demonstrate that
these dendrimers form amorphous states. They also
have high fluorescence quantum yields, which indicate
that these dendrimers are candidates for the application
in OLED as light emitting materials. We are currently
investigating the electroluminescent properties of these
dendrimers.
10. (a) Elmorsy, S. S.; Pelter, A.; Smith, K. Tetrahedron Lett.
1991, 32, 4175; (b) Plater, M. J. Synth. Lett. 1993, 6, 405;
(c) Cherioux, F.; Guyard, L. Adv. Funct. Mater. 2001, 11,
305.
11. He, Q.; Huang, H.; Yang, J.; Lin, H.; Bai, F. J. Mater.
Chem. 2003, 13, 1085.
12. The general procedure used for the Wittig–Horner reac-
tion: 546 mg (2.0 mmol) of 4-(diphenylamino)benzalde-
hyde and 378 mg (0.5 mmol) of 3 were dissolved in 20 ml
of dry THF. The resulting solution was added dropwise
slowly to 280 mg (2.5 mmol) of t-BuOK in 20 ml of dry
THF at 0 ꢁC, then the reaction mixture was warmed to
room temperature and stirred under N2 overnight. The
mixture was poured into water and extracted with
dichloromethane. The organic phase was washed with
water, brine, and dried over MgSO4. After removing the
solvent, the product was purified by column chromatog-
raphy using dichloromethane/petroleum ether (1/4) gave 5
(406 mg, 73%) as a yellow solid.
Acknowledgments
This work was supported by the State Key Development
Program for Basic Research of China (Grant No.
2002CB613401), the National Natural Science Founda-
tion of China (Grant No. 20474023, 50673035), the Pro-
gram for Changjiang Scholars and Innovative Research
Team in University (Grant No. IRT0422), the 111 Pro-
ject (Grant No. B06009), the Research Project of Jilin
Province (Grant No. 20050504, 20060702) and the Re-
search Project of Changchun City (Grant No. 06GH03).
1H NMR (500 MHz CDCl3) d 7.02–7.08 (m, 15H, Ar),
7.12–7.15 (m, 15H, Ar), 7.25–7.28 (m, 12H, Ar), 7.42 (d,
J = 8.5 Hz, 6H, Ar), 7.61 (d, J = 8.0 Hz, 6H, Ar), 7.70 (d,
J = 8.5 Hz, 6H, Ar), 7.81 (s, 3H, Ar) 13C NMR (75 MHz
CDCl3) 123.06, 123.53, 124.51, 126.40, 126.79, 127.39,
127.54, 128.39, 129.28, 131.39, 137.01, 139.84, 141.93,
147.42, 147.50. MALDI/TOF MS: Calcd for C84H63N3:
1113.5, Found: 1114.3. Anal. Calcd for C84H63N3: C,
90.53; H, 5.70; N, 3.77. Found: C, 90.31; H, 5.82; N, 3.58.
The same procedure was used to prepare the dendrimer
Supplementary data
Supplementary data associated with this article can be
1
References and notes
TPB-TPA9: Compound 9: H NMR (500 MHz CDCl3) d
6.96–7.05 (m, 36H, Ar), 7.08–7.15 (m, 48H, Ar), 7.24–7.29
(m, 30H, Ar), 7.36–7.40 (m, 18H, Ar), 7.43 (d, J = 8.0 Hz,
6H, Ar), 7.60 (d, J = 8.0 Hz, 6H, Ar), 7.69 (d, J = 7.5 Hz,
6H, Ar), 7.80 (s, 3H, Ar) 13C NMR (75 MHz CDCl3)
122.95, 123.64, 124.04, 124.33, 124.41, 124.63, 126.40,
126.67, 126.84, 126.90, 127.16, 127.22, 127.48, 127.56,
128.32, 129.25, 131.73, 131.84, 132.51, 136.95, 139.86,
141.94, 146.33, 146.68, 147.10, 147.54. MALDI/TOF MS:
Calcd for C204H153N9 2728.2, Found: 2729.4. Anal. Calcd
for C204H153N9: C, 89.74; H, 5.65; N, 4.62. Found: C,
89.54; H, 5.81; N, 4.48.
1. (a) Jenekhe, S. A. Adv. Mater. 1995, 7, 309; (b) Grimsdale,
A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402;
(c) Miller, J. S. Adv. Mater. 1993, 5, 671; (d) Carroll, R. L.;
Gorman, C. B. Angew. Chem., Int. Ed. 2002, 41, 4378.
2. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J.
Science 1995, 270, 1789.
3. Bhawalkar, J. D.; He, G. S.; Prasad, P. N. Rep. Prog.
Phys. 1996, 59, 1041.
4. Schon, J. H.; Dodabalapur, A.; Kloc, C.; Batlogg, B.
Science 2000, 290, 963.
5. Joswick, M. D.; Cambell, I. H.; Barashkov, N. N.;
Ferraris, J. P. J. Appl. Phys. 1996, 80, 2883.
13. Shirota, Y.; Kobata, T.; Noma, N. Chem. Lett. 1989,
1145.