Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Organic Letters
Letter
KD = 9.4) was noted in the process, affording direct evidence
that the event of C−H bond cleavage might have constituted a
rate-determining step.
Experimental procedures and spectral data for all new
compounds (PDF)
To elucidate further whether the excited photocatalyst was
quenched by hypervalent iodine(III) compound 8 or allylic
alcohol 1a in this reaction, a series of fluorescence quenching
(Stern−Volmer) experiments on 4CzIPN were therefore
the concentration of hypervalent iodine(III) compound 8
resulted in a significant decrease of fluorescence intensity of
4CzIPN, which strongly implied that the hypervalent iodine-
(III) compound 8 should take part in single electron transfer
with the photocatalyst.11
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Shunyou Cai: 0000-0001-8959-245X
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
On the basis of the observed reactivities, and the above
investigations, a proposed reaction pathway is shown in
Scheme 5. Initially, PhI(OCOCF3)2 reacts with 1,3,5-
■
We thank the National Natural Science Foundation of China
(21502086 and 41575118), the Natural Science Foundation of
Fujian Province (2015J05028), the Outstanding Youth Science
Foundation of Fujian Province (2015J06009), and the
Program for Excellent Talents of Fujian Province for financial
support.
Scheme 5. Proposed Mechanistic Network
REFERENCES
■
(1) (a) Spencer, C. M.; Faulds, D. Drugs 2000, 60, 321. (b) Stoll, A.;
Seebeck, E. Adv. Enzymol. Relat. Areas Mol. Biol. 2006, 11, 377.
(c) Garnock-Jones, S.; Dhillon, K. P.; Scott, L. J. CNS Drugs 2009, 23,
793.
(2) (a) Braverman, S. In The Chemistry of Sulfones and Sulfoxides;
Patai, S., Rappoport, Z., Stirling, C. Ed.; Wiley, Chichester, 1988; p
717;. (b) Salas, M.; Ward, A.; Caro, J. B. M. C. BMC Gastroenterol.
2002, 2, 17. (c) Carreno, M. C.; Ribagorda, M.; Posner, G. H. Angew.
̃
Chem., Int. Ed. 2002, 41, 2753. (d) Bur, S. K.; Padwa, A. Chem. Rev.
2004, 104, 2401. (e) Smith, L. H. S.; Coote, S. C.; Sneddon, H. F.;
Procter, D. J. Angew. Chem., Int. Ed. 2010, 49, 5832. (f) Wojaczynska,
E.; Wojaczynski, J. Chem. Rev. 2010, 110, 4303.
trimethoxybenzene (C) to generate the hypervalent iodine(III)
compound 8, which would be intercepted by the excited state
species 4CzIPN, converting it into a highly active radical E.
This process is likely facilitated by electron-donating character-
istics and large steric bulk of the 1,3,5-trimethoxybenzene.
Subsequently, abstraction of hydrogen from dimethyl sulfoxide
would take place to yield the 2-iodo-1,3,5-trimethoxybenzene 5
and the key α-sulfinyl radical. Finally, the α-sulfinyl radical
might engage in the radical addition to allylic alcohol to afford
the intermediate F, followed by a sequence of 1,2-aryl
migration,12 oxidation, and deprotonation to give rise to the
final α-aryl-γ-methylsulfinyl ketone, 2a.
In conclusion, motivated by the original design concept of
exploring a new method for C−H functionalization by means
of photoredox catalysis, we have described herein that the first
photocatalyzed, reliable generation of α-aryl-γ-methylsulfinyl
ketones from α-aryl allylic alcohols and dimethyl sulfoxide had
been developed under synergistic actions of visible light
irradiation, organic fluorophores 4CzIPN, and hypervalent
iodine(III) reagent. Of central significance in this discovery is
likely the identification of a new and practical method for
providing access to α-sulfinyl radical intermediates from readily
available dimethyl sulfoxide. With the broadly appreciated
applications of sulfoxides in both pharmaceutical and biological
contexts, we envisioned that further synthetic utilities could be
conceived on this robust reactive species, and new efforts
would continuously be fueled and accelerated in due course.
(3) Rayner, C. M. Contemp. Org. Synth. 1995, 2, 409.
(4) (a) Keshari, T.; Yadav, V. K.; Srivastava, V.; Yadav, L. D. S. Green
Chem. 2014, 16, 3986. (b) Cui, H.; Wei, W.; Yang, D.; Zhang, Y.;
Zhao, H.; Wang, L.; Wang, H. Green Chem. 2017, 19, 3520.
(c) Guerrero-Corella, A.; Martinez-Gualda, A.; Ahmadi, F.; Ming, E.;
Fraile, A.; Aleman, J. Chem. Commun. 2017, 53, 10463.
(5) For selected reviews on photoredox catalysis, see: (a) Karkas, M.
D.; Porco, J. A., Jr; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013,
113, 5322. (c) Schultz, D. M.; Yoon, T. P. Science 2014, 343,
1239176. (d) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116,
10075. (e) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A.
ACS Catal. 2017, 7, 2563. (f) Ravindar, L.; Revathi, L.; Fang, W.-Y.;
Rakesh, K. P.; Qin, H.-L. Adv. Synth. Catal. 2018, DOI: 10.1002/
adsc.201800736.
(6) (a) Ananikov, V. P. ACS Catal. 2015, 5, 1964. (b) Hwang, S. J.;
Powers, D. C.; Maher, A. G.; Anderson, B. L.; Hadt, R. G.; Zheng, S.
L.; Chen, S.; Nocera, D. G. J. Am. Chem. Soc. 2015, 137, 6472.
(c) Miyazawa, K.; Koike, T.; Akita, M. Chem. - Eur. J. 2015, 21,
11677. (d) Louillat-Habermeyer, M.; Jin, R.; Patureau, F. W. Angew.
Chem., Int. Ed. 2015, 54, 4102. (e) Davies, J.; Booth, S. G.; Essafi, S.;
Dryfe, R. A. W.; Leonori, D. Angew. Chem. 2015, 127, 14223.
(f) Greulich, T. W.; Daniliuc, C. G.; Studer, A. Org. Lett. 2015, 17,
254. (g) Barata-Vallejo, S.; Bonesi, S. M.; Postigo, A. Org. Biomol.
Chem. 2015, 13, 11153. (h) Gu, Z.; Zhang, H.; Xu, P.; Cheng, Y.;
Zhu, C. Adv. Synth. Catal. 2015, 357, 3057. (i) Jiang, H.; An, X.;
Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem., Int. Ed. 2015,
54, 4055. (j) Cai, S. Y.; Tian, Y.; Zhang, J.; Liu, Z.; Lu, M.; Weng, W.;
Huang, M. Adv. Synth. Catal. 2018, 360, 4084.
ASSOCIATED CONTENT
* Supporting Information
■
S
(7) (a) Wang, Y.; Li, G.-X.; Yang, G.; He, G.; Chen, G. Chem. Sci.
2016, 7, 2679. (b) Kamijo, S.; Takao, G.; Kamijo, K.; Hirota, M.; Tao,
K.; Murafuji, T. Angew. Chem., Int. Ed. 2016, 55, 9695. (c) Ishida, N.;
Masuda, Y.; Uemoto, S.; Murakami, M. Chem. - Eur. J. 2016, 22, 6524.
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.or-
glett.8b03340.
D
DOI: 10.1021/acs.orglett.8b03340
Org. Lett. XXXX, XXX, XXX−XXX