Triplet 1,2-Biradicals
1713
Energy
transfer
O
O
O
O
ꢁN2
N
N3
N3
hν
N3
Ph
Ph
Ph
Ph
T1K of 6
6
7
8
Scheme 6. Formation of triplet vinylnitrene through 1,2-biradical 6.
residue was purified on a silica column eluted with ethyl acetate/
hexane (3 : 7) to yield 1 as a clear oil (5.8 g, 36 mmol, 83 %). nmax
(neat)/cmꢁ1 3060, 2978, 2933, 1684 (C¼O), 1596, 1448, 1215,
962, 702. The 1H NMR, 13C NMR, and IR spectra matched the
those reported in the literature.[40] dH (CDCl3, 400 MHz) 1.35
(3H, d, J 6.8), 4.19 (1H, dq, J 6.8, 7.6), 5.15 (1H, d, J 10.2), 5.20
(1H, d, J 17.3), 6.01 (1H, ddd, J 7.6, 10.2, 17.3), 7.49 (2H, m),
7.58–7.54 (1H, m), 7.99 (2H, d, J 7.0). dC (CDCl3, 100 MHz)
201.1, 138.2, 136.3, 132.9, 128.5, 128.4, 116.5, 45.5, 17.0. m/z
(electron impact) 160 (Mþ).
[12] R. A. Caldwell, C. V. Cao, J. Am. Chem. Soc. 1982, 104, 6174.
[13] E. Garc´ıa-Expo´sito, R. Gonza´lez-Moreno, M. Mart´ın-Vila`, E. Muray,
J. Rife´, J. L. Bourdelande, V. Branchadell, R. M. Ortun˜o, J. Org. Chem.
[14] M. T. Nguyen, M. H. Matus, W. A. Lester Jr, D. A. Dixon, J. Phys.
[15] F. Qi, O. Sorkhabi, A. G. J. Suits, Chem. Phys. 2000, 112, 10707.
[16] S. Muthukrishnan, J. Sankaranarayanan, R. F. Klima, T. C. S. Pace,
C. Bohne, A. D. Gudmundsdottir, Org. Lett. 2009, 11, 2345.
[17] S. Rajam, A. V. Jadhav, Q. Li, S. K. Sarkar, P. N. D. Singh, A. Rohr,
T. C. S. Pace, R. Li, J. A. Krause, C. Bohne, B. S. Ault,
A. D. Gudmundsdottir, J. Org. Chem. 2014, 79, 9325. doi:10.1021/
Photolysis of 2-methyl-1-phenylbut-3-en-1-one (1)
Product Studies of 1 in Argon or Oxygen-Saturated CDCl3
[18] O. Stern, M. Volmer, Phys. Z. 1919, 20, 183.
A solution of 1 (15 mg, 93 mmol) in CDCl3 (2 mL) was
purged with argon or oxygen for 5 min and photolyzed through a
Pyrex filter at ambient temperature. The 1H NMR spectrum of
the irradiated solution was recorded every 30 min during the 3-h
irradiation period, and no significant changes were observed in
the 1H NMR spectra.
[20] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov,
J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma,
V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg,
Supplementary Material
Cartesian coordinates and energies of 1 and NMR and IR spectra
1
of 1; synthesis and H NMR spectra of 1-d are available from
the Journal’s website.
Acknowledgements
¨
S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz,
This work was supported by National Science Foundation (CHE-1057481)
and the Ohio Supercomputer Center. HDMS acknowledges Doctoral
Enhancement fellowship from the Department of Chemistry, University of
Cincinnati.
J. Cioslowski, D. J. Fox, 2009 (Gaussian Inc.: Wallingford, CT).
[21] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. doi:10.1103/
[22] S. Muthukrishnan, S. M. Mandel, J. C. Hackett, P. N. D. Singh,
C. M. Hadad, J. A. Krause, A. D. Gudmundsdottir, J. Org. Chem.
References
[1] See Section 32.3: J. M. Berg, J. L. Tymoczko, L. Stryer, Photoreceptor
Molecules in the Eye Detect Visible Light, in Biochemistry 5th edn
2002 (W. H. Freeman and Company: New York, NY).
[2] C. Dugave, L. Demange, Chem. Rev. 2003, 103, 2475. doi:10.1021/
[3] E. Merino, M. Ribagorda, Beilstein J. Org. Chem. 2012, 8, 1071.
ˇ
[4] P. Kla´n, T. Solomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina,
[23] S. Muthukrishnan, J. Sankaranarayanan, T. C. S. Pace, A. Konosonoks,
M. Demichiei, M. Meese, C. Bohne, A. D. Gudmundsdottir, J. Org.
[24] R. A. A. Upul Ranaweera, J. Sankaranarayanan, L. Casey, B. S. Ault,
A. D. Gudmundsdottir, J. Org. Chem. 2011, 76, 8177. doi:10.1021/
[25] D. W. Gamage, Q. Li, R. A. A. U. Ranaweera, S. K. Sarkar,
G. K. Weragoda, P. L. Carr, A. D. Gudmundsdottir, J. Org. Chem.
[26] R. A. A. U. Ranaweera, Y. Zhao, S. Muthukrishnan, C. Keller,
A. D. Gudmundsdottir, Aust. J. Chem. 2010, 63, 1645. doi:10.1071/
V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119. doi:10.1021/
[5] J. Sankaranarayanan, S. Muthukrishnan, A. D. Gudmundsdottir, in
Advanced Physical Organic Chemistry (Ed. J. P. Richard) 2009,
pp. 39–77 (Academic Press: San Diego, CA).
[27] A. A. Lamola, J. P. Mittal, Science 1966, 154, 1560. doi:10.1126/
[28] A. Miyoshi, H. Matsui, N. Washida, J. Phys. Chem. 1990, 94, 3016.
[7] P. Farmanara, V. Stert, W. Radloff, Chem. Phys. Lett. 1998, 288, 518.
[8] J. M. Mestdagh, J. P. Visticot, M. Elhanine, B. Soep, J. Chem. Phys.
[29] A. Schocker, M. Uetake, N. Kanno, M. Koshi, K. Tonokura, J. Phys.
[9] R. A. Caldwell, Pure Appl. Chem. 1984, 56, 1167.
[10] D. J. Unett, R. A. Caldwell, Res. Chem. Intermed. 1995, 21, 665.
[11] R. A. A. U. Ranaweera, T. Scott, Q. Li, S. Rajam, A. Duncan, R. Li,
A. Evans, C. Bohne, J. P. Toscano, B. S. Ault, A. D. Gudmundsdottir,
[30] H. H. Grotheer, G. Riekert, U. Meier, T. Just, Ber. Bunsenges. Phys.
[31] R. G. Parr, Y. Weitao, Density-Functional Theory of Atoms and
Molecules 1989 (Oxford University Press: Oxford, UK).
[32] J. K. Labanowski, J. W. Andzelm, Density Functional Methods in
Chemistry 1991 (Springer-Verlag: New York, NY).