704
F. Narjes et al. / Bioorg. Med. Chem. Lett. 12 (2002) 701–704
bond acceptor, probably because of its high electro-
negativity and low polarizability.25,26 In contrast, CF2H
has been documented as a proton donor in hydrogen
bonding interactions.27 Recent structural studies28 of
tripeptide analogues of 6 co-crystallized with NS3/4A
confirm this design. The CF2H moiety is almost com-
pletely buried in the P1-specificity pocket creating a
large lipophilic contact surface area. In this structure
the flexible, lipophilic part of the Lys136 sidechain is
oriented so that it covers the CF2H moiety, while the
ammonium group is close to the ketoacid carboxylate
(Fig. 3). In the rather apolar environment of the P1-
specificity pocket electrostatic complementarity becomes
important, even for relatively unpolar groups. Accord-
ingly, the CF2H is oriented with its proton close to the
carbonyl oxygen of Lys136 and one fluorine atom in
contact with the para hydrogen of Phe154. Thus, steric
and electrostatic similarity of the Cys sidechain and
difluoroAbu allows a similar mode of binding in the P1-
specificity pocket with almost complete burial of the
sidechain. The observation that difluoroAbu works
under such highly specific conditions as a Cys mimetic
underlines its general applicability as a non-reactive Cys
surrogate.
10. Burley, S. K.; Petsko, G. A. In Weakly Polar Interactions
in Proteins. In: Adv. Prot. Chem. 39; Anfinsen, C. B., Edsall, J.
T., Richards, F. M., Eisenberg, D. S., Eds.; Academic: San
Diego, USA, 1988; p 125.
11. Calculations were performed on a Silicon Graphics
Extreme workstation (R4000 CPU). Ab initio calculations
were performed using Spartan version 5.02, with default set-
tings. Starting geometries of methanethiol and 1,1-difluoro-
ethane were built using the Spartan molecular editor and were
fully optimized using the 6-31G* basis set. Molecular electro-
static potentials (MEP) were plotted over the total electron
density surface using the 6-31G* wave function. Ab initio
optimized geometries were imported into Sybyl version 6.3
and the surfaces were generated using the Van der Waals dot
option.
12. Narjes, F.; Brunetti, M.; Colarusso, S.; Gerlach, B.; Koch,
U.; Biasiol, G.; Fattori, D.; De Francesco, R.; Matassa, V. G.;
Steinkuhler, C. Biochemistry 2000, 39, 1849.
13. Analogous to the trifluoro analogue: Tsushima, T.;
Kawada, K.; Ishihara, S.; Uchida, N.; Shiratori, O.; Higaki,
J.; Hirata, M. Tetrahedron 1988, 44, 5375.
14. The more active diastereomer was assigned the l-config-
uration at P1, in accord with the results from 4 and 5 and
recently published structures of enzyme inhibitor complexes
(see ref 28).
15. Winkler, D.; Burger, K. Synthesis 1999, 1419.
16. Intermediates and final compounds have been character-
1
ized by H and 13C NMR, MS and RP-HPLC.
17. Urbani, A.; Bianchi, E.; Narjes, F.; Tramontano, A.; De
Francesco, R.; Steinkuhler, C.; Pessi, A. J. Biol. Chem. 1997,
272, 9204.
Acknowledgements
The authors thank K. Prendergast for valuable discus-
sions, B. Wang for early contributions, A. Pessi for a
sample of 2, S. Pesci for NMR spectra, and F. Naimo
and F. Bonelli for Mass spectra.
18. Koch, U.; Biasiol, G.; Brunetti, M.; Fattori, D.; Brunetti,
M.; Palloro, M.; Steinkuhler, C. Biochemistry 2001, 40, 631.
19. (a) Bennett, J. M.; Campbell, A. D.; Campbell, A. J.;
Carr, M. G.; Dunsdon, R. M.; Greening, J. R.; Hurst, D. N.;
Jennings, N. S.; Jones, P. S.; Jordan, S.; Kay, P. B.; O’Brien,
M. A.; King-Underwood, J.; Raynham, T. M.; Wilinson, C. S.;
Wilinson, T. S. I.; Wilson, F. X. L. Bioorg. Med. Chem. Lett.
2001, 11, 355. (b) Han, W.; Hu, Z.; Jiang, X.; Decicco, C. P.
Bioorg. Med. Chem. Lett. 2000, 10, 711.
20. Akahoshi, F.; Ashimori, A.; Sakashita, H.; Yoshimura,
T.; Imada, T.; Nakajima, M.; Mitsutomi, N.; Kuwahara, S.;
Ohtsuka, T.; Fukaya, C.; Miyazaki, M.; Nakamura, N. J.
Med. Chem. 2001, 44, 1286 and references cited therein.
21. Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303
and references cited therein.
22. Reid, K. S. C.; Lindley, P. F.; Thornton, J. M. FEBS
1985, 190, 209.
23. Platts, J. A.; Howard, S. T.; Bracke, B. R. F. J. Am.
Chem. Soc. 1996, 118, 2726.
24. Erlanson, D. A.; Verdine, G. L. Chem. Biol. 1994, 1, 79.
25. Dunitz, J. D.; Taylor, R. Chem. Eur. J. 1997, 3, 89.
26. Howard, J. A. K.; Hay, V. J.; O’Hagan, D.; Smith, G. T.
Tetrahedron 1996, 52, 12613.
27. Erickson, J. A.; McLoughlin, J. J. Org. Chem. 1995, 60,
1626.
References and Notes
1. Review: Clarke, B. J. Gen. Virol. 1997, 78, 2397.
2. Cohen, J. Science 1999, 285, 26.
3. Dymock, B. W.; Jones, P. S.; Wilson, F. X. Antiviral Chem.
Chemother. 2000, 11, 79.
4. Review: Kwong, A. D.; Kim, J. L.; Rao, G.; Lipovsek, D.;
Raybuck, S. A. Antiviral Res. 1998, 40, 1.
5. Review: De Francesco, R.; Steinkuhler, C. Curr. Top. Micr.
Immunol. 2000, 242, 149.
6. Schechter, I.; Berger, A. Biochem. Biophys. Res. Commun.
1967, 27, 157.
7. Ingallinella, P.; Altamura, S.; Bianchi, E.; Taliani, M.;
Ingenito, R.; Cortese, R.; De Francesco, R.; Steinkuhler, C.;
Pessi, A. Biochemistry 1998, 37, 8906.
8. Llinas-Brunet, M.; Bailey, M.; Fazal, G.; Ghiro, E.; Gorys,
V.; Goulet, S.; Halmos, T.; Maurice, R.; Poirier, M.; Poupart,
M.-A.; Rancourt, J.; Thibeault, D.; Wernic, D.; Lamarre, D.
Bioorg. Med. Chem. Lett. 2000, 10, 2267.
9. Colarusso, S.; Gerlach, B.; Koch, U.; Muraglia, E.; Conte,
I.; Stansfield, I.; Matassa, V. G.; Narjes, F. Bioorg. Med.
Chem. Lett. 2002, 12, 705.
28. Di Marco, S.; Rizzi, M.; Volpari, C.; Walsh, M. A.;
Narjes, F.; Colarusso, S.; De Francesco, R.; Matassa, V. G.;
Sollazzo, M. J. Biol. Chem. 2000, 275, 7152.