4
Tetrahedron
In conclusion, we synthesized both C20-C29 and C20-C34
4. (a) Mahapatra, S.; Carter, R. G. Angew. Chem. Int. Ed. 2012, 51,
7
2
948–7951. (b) Mahapatra, S.; Carter, R. G. J. Am. Chem. Soc.
013, 135, 10792–10803. (c) Valot, G.; Regens, C. S.; O’Malley,
fragments of amphidinolides F and C by using an original
Liebeskind–Srogl cross-coupling as a key step for direct
introduction of their side chain. We showed for the first time not
only the boronic acids but some boronates such as catechol
boronate can be used in this reaction by an in situ hydrolysis. In
case of unstable boronic acid derivatives, the tin version of
Liebeskind–Srogl cross-coupling can be a helpful alternative. We
also found the reduction of unsaturated γ-butyrolactone-γ-ketones
such as 4a and 4d is highly diastereoselective by using
D. P.; Godineau, E.; Takikawa, H.; Fürstner, A. Angew, Chem. Int.
Ed. 2013, 52, 9534–9538. (d) Valot, G.; Mailhol, D.; Regens, C.
S.; O'Malley, D. P.; Godineau, E.; Takikawa, H.; Philipps, P.;
Fürstner, A. Chem. Eur. J. 2015, 21, 2398–2408.
5
.
(a) Jalce, G.; Franck, X.; Seon-Meniel, B.; Hocquemiller, R.;
Figadère, B. Tetrahedron Lett. 2006, 47, 5905–5908. (b) Seck,
M.; Franck, X.; Seon-Meniel, B.; Hocquemiller, R.; Figadère, B.
Tetrahedron Lett. 2006, 47, 4175–4180.
6. (a) Peyrat, J.-F.; Chaboche, C.; Figadère, B.; Cavé, A.
Tetrahedron Lett., 1995, 36, 2757. (b) Cahiez, G.; Metais, E.
Tetrahedron: Asymmetry 1997, 8, 1373–1376. (c) Yao, Z.; Zhang,
Y.; Wu, Y. Acta Chim. Sinica 1992, 901–904. (d) Ho, P.-T.; Kolt,
R. J. Canadian J. Chem. 1982, 60, 663–666.
3
Ph SiH/TBAF in HMPA. Installation of the stereogenic center at
C29 for the synthesis of the side chain of amphidinolide C was
created from a successful reductive elimination of an epoxy
alcohol. Vanadium-catalyzed Yamamoto epoxidation showed to
be far superior to the classical Sharpless epoxidation on 2,3-
trisubstituted allylic alcohols. This represents the first application
of this asymmetric reaction toward the synthesis of natural
products.
7
.
(a) Trost, B. M.; Schmidt, T. J. Am. Chem. Soc. 1988, 110, 2301–
303. (b) Trost, B. M.; Kazmaier, U. J. Am. Chem. Soc. 1992, 114,
7933–7935.
8. (a) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122,
2
1
2
1260–11261. (b) Yang, H.; Liebeskind, L. S. Org. Lett. 2007, 9,
993–2995. (c) Prokopcova, H.; Kappe, C. O. Angew. Chem. Int.
Ed. 2009, 48, 2276–2286.
Yang, H.; Li, H.; Wittenberg, R.; Egi, M.; Huang, W.; Liebeskind,
L. S. J. Am. Chem. Soc. 2007, 129, 1132–1140.
Acknowledgements
9
.
The Agence Nationale de la Recherche (ANR) through
AMPHICTOT project supported the work. We thank Karine
Leblanc of our internal analysis service for acquisition of HRMS
and HPLC analysis. We gratefully acknowledge Mr. Ron New of
UC Riverside's Analytical Chemistry Instrumentation Facility for
recording LIFDI mass spectra.
10. Prepared by an adapted literature procedure: a) Bitter, I.; Töke, L.;
Bende, Z.; Kárpáti-Ádám, É.; Soós, R. Tetrahedron 1984, 40,
4
501–4505. b) Shapiro, E.; Kalinin, A. V.; Bogdan, U.; Nefedov,
O. M. J. Chem. Soc., Perkin Trans. 2, 1994, 709–713. See
supporting information for experimental procedure.
11. Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1972, 94, 4370.
12. (a) Frank, S. A.; Roush, W. R. J. Org. Chem. 2002, 67, 4316–
4
1
324. (b) Roush, W. R.; Brown, B. B. J. Am. Chem. Soc. 1993,
15, 2268–2278. (c) Torrado, A.; Iglesias, B.; López, S.; De Lera,
Supplementary data
A. R. Tetrahedron 1995, 51, 2435–2454.
1
3. Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226–2227.
1
Supplementary data (experimental details, copies of H and
C
14. Fujii, H.; Oshima, K.; Utimoto, K., Tetrahedron Lett. 1991, 32,
147.
1
1
3
6
NMR spectra for products, chromatograms for
5. Fujita, M.; Hiyama, T. J. Org. Chem. 1988, 53, 5405–5415.
6. Fang, G. H.; Yuan, Z. J.; Yang, J.; Deng, M. Z. Synthesis 2006, 7,
diastereoisomeric and enantiomeric measurements. This material
is available free of charge via the Internet at the doi.) associated
with this article can be found, in the online version, at.
1
1
148–1154.
17. Nicolaou, K. C.; Piscopio, A. D.; Bertinato, P.; Chakraborty, T.
K.; Minowa, N.; Koide, K. Chem. Eur. J. 1995, 1, 318–333.
References and notes
18. (a) Sharpless, B. K.; Katsuki, T. J. Am. Chem. Soc. 1980, 102,
5
974–5976. (b) Hanson, R. M.; Sharpless, K. B. J. Org. Chem.
986, 51, 1922–1925. (c) Gao, Y.; Klunder, J. M.; Hanson, R. M.;
1
1
2
.
.
(a) Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77–93. (b)
Kobayashi, J.; Kubota, T. J. Nat. Prod. 2007, 451-460.
(a) Kobayashi, J.; Ishibashi, M.; Wâlchli, M. R.; Nakamura, H.;
Masamune, H.; Ko, S. Y.; Sharpless, K. B. J. Am. Chem. Soc.
987, 109, 5765–5780.
1
1
2
2
2
2
2
9. Zhang, W.; Basak, A.; Kosugi, Y.; Hoshino, Y.; Yamamoto, H.
Angew. Chem. Int Ed. 2005, 44, 4389-4391.
0. Stamos, D. P.; Taylor, A. G.; Kishi, Y. Tetrahedron Lett. 1996,
Hirata, Y.; Sasaki, T.; Ohizumi, Y. J. Am. Chem. Soc. 1988, 110,
4
2
90–494. (b) Kubota, T. ; Tsuda, M. ; Kobayashi, J. Tetrahedron
001, 57, 5975–5977. (c) Kubota, T. ; Tsuda, M. ; Kobayashi, J.
3
7, 8647–8650.
1. Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716–
717.
2. Struble, J. R.; Lee, S. J.; Burke, M. D. Tetrahedron 2010, 66,
710–4718.
3. Woerly, E. M.; Roy, J.; Burke, M. D. Nat. Chem. 2014, 6, 484–
91.
4. (a) Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskind, L. S. Org. Lett.
003, 5, 3033–3035. (b) Li, H.; Yang, H.; Liebeskind, L. S. Org.
Org. Lett. 2001, 3, 1363.
3
.
(a) Ishiyama, H.; Ishibashi, M.; Kobayashi, J. Chem. Pharm. Bull.
6
1
996, 44, 1819–1822. (b) Kubota, T., Tsuda, M.; Kobayashi, J.
Tetrahedron 2003, 59, 1613–1625. (c) Shotwell, J. B.; Roush, W.
R. Org. Lett. 2004, 12, 3865–3868. (d) Mohapatra, D. K.;
Rahaman, H.; Chorghade, M. S.; Gurjar, M. K. Synlett 2007, 567–
4
4
5
70. (e) Bates, R. H.; Shotwell, J. B.; Roush, W. R. Org. Lett.
2
008, 9, 4343–4346. (f) Armstrong, A.; Pyrkotis, C. Tetrahedron
2
Lett. 2009, 50, 3325–3328. (g) Mohapatra, D. K.; Dasari, P.;
Rahaman, H.; Pal, R. Tetrahedron Lett. 2009, 50, 6276–6279. (h)
Paudyal, M. P.; Rath, N. P.; Spilling, C. D. Org. Lett. 2010, 12,
Lett. 2008, 10, 4375–4378.
2
2
5. Pihko, P. M.; Koskinen, A. M. Synthesis 1999, 12, 1966–1968.
Zinc reagent precursor (E)-1,2-Bis(tributylstannyl)ethane was
prepared according to a literature procedure: Enev, V. S.;
Felzmann, W.; Gromov, A.; Marchart, S.; Mulzer, J. Chem. Eur. J.
2
4
954–2957. (i) Ferrié, L.; Figadère, B. Org. Lett. 2010, 12, 4976–
979. (j) Roy, S.; Spilling, C. D. Org. Lett. 2010, 12, 5326–5329.
(
(
k) Morra, N. A.; Pagenkopf, B. L. Org. Lett. 2011, 13, 572–575.
l) Wu, D.; Forsyth, C. J. Org. Lett. 2013, 15, 1178–1181. (m)
2
012, 18, 9651–9668.
6. Prepared according to a literature procedure: Saito, T.; Fuwa, H.;
Clark, J. S.; Yang, G.; Osnowski, A. P. Org. Lett. 2013, 15, 1460–
Sasaki, M. Tetrahedron 2011, 67, 429–445.
1
1
2
463. (n) Clark, J. S.; Yang, G.; Osnowski, A. P. Org. Lett. 2013,
5, 1464–1467. (o) Morra, N. A.; Pagenkopf, B. L. Tetrahedron
013, 69, 8632–8644. (p) Delcamp, J. H.; Gormisky, P. E.; White,
M. C. J. Am. Chem. Soc. 2013, 135, 8460–-8463.