Table 1. Asymmetric Friedel-Crafts Reactions of Silyl Enol Ethers with Fluoral Catalyzed by BINOL-Ti Complex
5
aldol reaction. Sequentially, diastereoselective reactions of
enol ether (2a) with fluoral (run 1). The F-C product (3a)
the F-C products with fluoral can thus produce highly
was easily separated from the usual aldol product (4a) by
simple flash chromatography. Notably, the enantiomeric
excess of the major product (Z)-3a was found to be excellent
(98% ee). In contrast, the reaction of trimethylsilyl enol
ether (2b) gave only the usual aldol-type product (4b) (run
2). The sterically bulky silyl and electron-withdrawing
trifluoromethyl substituents might be important for prevent-
ing inter- or intramolecular nucleophilic attack on the silyl
group in the zwitterion intermediate (D) where the aromatic
6
functionalized organofluorine compounds that are of mate-
7
8
rial and pharmaceutical interest.
1
0
The F-C reaction of silyl enol ethers was investigated
using a chiral binaphthol-derived titanium (BINOL-Ti)
9
i
2 2
complex (1) prepared from (R)-BINOL and Cl Ti(OPr ) in
the presence of MS 4 Å (Table 1). Importantly, the F-C
product (3a) rather than the usual aldol product (4a) was
obtained in the catalytic reaction of tert-butyldimethylsilyl
substituent stabilizes the benzylic carbenium ion (Scheme
(
5) The recent mechanistic works of this reaction: (a) Hollis, T. K.;
11
2
).
Bosnich, B. J. Am. Chem. Soc. 1995, 117, 4570. (b) Carreira, E. M.; Singer,
R. A. Tetrahedron Lett. 1994, 35, 4323. (c) Denmark, S. E.; Chen, C.-T.
Tetrahedron Lett. 1994, 35, 4327. (d) Denmark, S. E.; Henke, R. B. J. Am.
Chem. Soc. 1991, 113, 2177. (e) Mikami, K.; Matsukawa, S. J. Am. Chem.
Soc. 1993, 115, 7039. (f) Mikami, K.; Matsukawa, S. J. Am. Chem. Soc.
Scheme 2
1
994, 116, 4077. (g) Bernardi, A.; Capelli, A. M.; Gennari, C.; Goodman,
J. M.; Paterson, I. J. Org. Chem. 1990, 55, 3576. (h) Li, Y.; Paddon-Row,
M. N.; Houk, K. N. J. Org. Chem. 1990, 55, 481.
(
6) In particular, asymmetric catalysis of carbon-carbon bond-forming
reactions is the most attractive method. (a) Review: Iseki, K. Tetrahedron
998, 54, 13887. (b) Mikami, K.; Yajima, T.; Takasaki, T.; Matsukawa,
1
S.; Terada, M.; Uchimaru, T.; Maruta, M. Tetrahedron 1996, 52, 85. (c)
Mikami, K.; Yajima, T.; Terada, M.; Uchimaru, T. Tetrahedron Lett. 1993,
3
4, 7591. (d) Soloshonok, V. A.; Hayashi, T. Tetrahedron Lett. 1994, 35,
2
713 and references therein.
Indeed, the use of sterically more demanding triisoprop-
ylsilyl enol ether (2c) led to the preferential (90% isolated
(
7) Reviews: (a) Resnati, G.; Soloshonok, V. A., Eds. Tetrahedron 1996,
5
2, 1. (b) Olah, G. A.; Chambers, R. D.; Prakash, G. K. S. Synthetic Fluorine
Chemistry; Wiley: New York, 1992.
8) Reviews: (a) Soloshonok, V. A., Ed. Enantiocontrolled Synthesis of
(
(10) Chiral HPLC conditions, 4a: Daicel, CHIRALPAK OD-H, n-
hexane/i-PrOH 95:5, 0.8 mL/min, 254 nm, tR ) 10 min (3S), 12 min (3R).
anti-4d,f: Daicel, CHIRALPAK AS, n-hexane/i-PrOH 98:2, 0.8 mL/min,
254 nm, tR ) 11 min (2R,3S), 38 min (2S,3R) for anti-4d, tR ) 28 min
(2R,3S), 64 min (2S,3R) for anti-4f. anti-4e: Daicel, CHIRALPAK AS,
n-hexane/i-PrOH 95:5, 0.8 mL/min, 254 nm, tR ) 19 min (2R,3S), 37 min
(2S,3R).
Fluoro-organic Compounds; John Wiley & Sons: Chichester, 1999. (b)
Ojima, I., McCarthy, J. R., Welch, J. T., Eds. Biomedical Frontiers of
Fluorine Chemistry; American Chemical Society: Washington, D.C., 1996.
(
c) Resnati, G. Tetrahedron 1993, 49, 9385.
9) Mikami, K.; Motoyama, Y.; Terada, M. J. Am. Chem. Soc. 1994,
16, 2812.
(
1
2014
Org. Lett., Vol. 1, No. 12, 1999