Journal of the American Chemical Society
Communication
butylbipyridine (dtbpy) was selected because it is commonly
used in Ni-catalyzed C−C and C−heteroatom coupling
reactions.20 The treatment of dtbpy-supported NiII complexes
4 and 5 with 1.5 equiv of TDTT and PhN2BF4, respectively,
afforded benzotrifluoride in 57% and 67% yield as determined
by 19F NMR spectroscopy (Figure 4a). Notably, these
AUTHOR INFORMATION
■
Corresponding Author
Author Contributions
†J.R.B. and N.M.C. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Science Foundation
Grant CHE-1111563. We gratefully acknowledge Dr. Jeff
Kampf for X-ray crystallographic analysis of 2, as well as
funding from NSF Grant CHE-0840456 for X-ray instrumen-
tation.
REFERENCES
■
(1) (a) Hu, X. Chem. Sci. 2011, 2, 1867. (b) Rosen, B. M.; Quasdorf,
K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.;
Percec, V. Chem. Rev. 2011, 111, 1346. (c) Montgomery, J.
Organonickel Chemistry. In Organometallics in Synthesis: Fourth
Manual; Lipshutz, B. H., Ed.; Wiley: Hoboken, N.J., 2013; pp 319−
428. (d) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014,
509, 299. (e) Everson, D. A.; Weix, D. J. J. Org. Chem. 2014, 79, 4793.
(2) For examples of stoichiometric C−heteroatom and C−C
reductive elimination from NiIII, see: (a) Burk, P.; Liu, M.;
Miyashita, A.; Grubbs, R. H. J. Am. Chem. Soc. 1978, 100, 2418.
(b) Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. 1978, 100, 1634.
(c) Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 7547.
(d) Amatore, C.; Jutand, A. Organometallics 1988, 7, 2203.
(e) Matsunaga, P. T.; Hillhouse, G. L.; Rheingold, A. L. J. Am.
Chem. Soc. 1993, 115, 2075. (f) Koo, K.; Hillhouse, G. L.
Organometallics 1995, 14, 4421. (g) Koo, K.; Hillhouse, G. L.
Organometallics 1996, 15, 2669. (h) Jones, G. D.; McFarland, C.;
Anderson, T. J.; Vicic, D. A. Chem. Commun. 2005, 4211. (i) Lin, X. F.;
Phillips, D. L. J. Org. Chem. 2008, 73, 3680. (j) Higgs, A. T.; Zinn, P. J.;
Sanford, M. S. Organometallics 2009, 28, 6142. (k) Breitenfeld, J.;
Woodrich, M.; Hu, X. Organometallics 2014, 33, 5708. (l) Zheng, B.;
Tang, F.; Luo, J.; Schultz, J. W.; Rath, N. P.; Mirica, L. M. J. Am. Chem.
Figure 4. (a) Oxidation and subsequent aryl−CF3 coupling from
dtbpy NiII complexes 4 and 5. (b) 19F NMR spectrum showing the
two signals assigned to the CF3 resonances of NiIV intermediate 6.
transformations proceeded to completion within 10 min at
room temperature. As such, they are among the fastest reported
examples of aryl−CF3 coupling at a group 10 metal center.8
Monitoring these reactions by 19F NMR spectroscopy at −25
°C showed the presence of the same transient diamagnetic
intermediate in both cases.21 The 19F NMR resonances
associated with this intermediate (a pair of quartets at −19.8
and −23.8 ppm, JFF = 7.9 Hz; Figure 4b) are consistent with an
unsymmetrical NiIV bis-trifluoromethyl complex of general
structure 6. The decay of intermediate 6 was accompanied by
growth of the resonance associated with benzotrifluoride.
Overall, these results strongly suggest that organometallic NiIV
complexes are accessible under mild conditions using catalyti-
cally relevant bidentate nitrogen donor ligands.
Soc. 2014, 136, 6499. (m) Cloutier, J.-P.; Vabre, B.; Moungang-Soume,
́
B.; Zargarian, D. Organometallics 2014, 34, 133.
In conclusion, this communication describes studies of the
formation and reactivity of NiIV(aryl)(CF3)2 complexes. We
demonstrate that these NiIV compounds can be accessed under
mild conditions via the net 2e− oxidation of NiII precursors with
diaryliodonium and aryldiazonium reagents. Furthermore, we
show that the NiIV complexes undergo aryl−CF3 bond-forming
reductive elimination. The facile formation of organometallic
NiIV complexes at or below room temperature suggests the
viability of NiIV intermediates in a recently reported nickel-
catalyzed C−H arylation reaction with Ph2IBF4.4 Additional
studies of related high-valent nickel systems will provide even
more insights into oxidants capable of generating NiIV
intermediates as well as the reactivity of these NiIV species. A
fundamental understanding of these transformations will
ultimately inform the development of new NiII/IV-catalyzed
reactions.
(3) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2013, 136, 898.
(4) Iyanaga, M.; Aihara, Y.; Chatani, N. J. Org. Chem. 2014, 79,
11933.
(5) (a) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2013, 135, 5308.
(b) Terao, J.; Kambe, N. Acc. Chem. Res. 2008, 41, 1545. (c) Wu, X.;
Zhao, Y.; Ge, H. J. Am. Chem. Soc. 2014, 136, 1789. (d) Yan, S.-Y.; Liu,
Y.-J.; Liu, B.; Liu, Y.-H.; Zhang, Z.-Z.; Shi, B.-F. Chem. Commun. 2015,
51, 7341.
(6) For reviews discussing the complementary reactivity of PdII
versus PdIV in catalysis, see: (a) Muniz, K. Angew. Chem., Int. Ed. 2009,
̃
48, 9412. (b) Canty, A. J. Dalton Trans. 2009, 10409. (b) Xu, L.-M.; Li,
B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712. (c) Sehnal, P.;
Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824.
(d) Racowski, J. M.; Sanford, M. S. Top. Organomet. Chem. 2011, 35,
61. (e) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177.
(7) (a) Dubinina, G. G.; Brennessel, W. W.; Miller, J. L.; Vicic, D. A.
Organometallics 2008, 27, 3933. (b) Jover, J.; Miloserdov, F. M.; Benet-
Buchholz, J.; Grushin, V. V.; Maseras, F. Organometallics 2014, 33,
6531.
ASSOCIATED CONTENT
■
(8) (a) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
(b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(c) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. (d) Ye,
Y.; Sanford, M. S. Synlett 2012, 23, 2005.
S
* Supporting Information
Experimental and spectral details for all new compounds and all
reactions reported. The Supporting Information is available free
C
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX