Spherical Supramolecular Minidendrimers
J. Am. Chem. Soc., Vol. 122, No. 8, 2000 1685
Scheme 2. Synthesis and Polymerization of
2-[3,4,5-Tris(n-alkan-1-yloxy)phenyl]-2-oxazoline
(t12-APOX)
properties in the bulk state.9 These LC lattices are actively
exploited for rational design both in our and in other
laboratories.2-8
The goal of this publication is to report that spherical
supramolecular dendrimers also self-organize into a second
“inverse micellar”-like thermotropic cubic phase of Im3hm space
group. Both this phase and its analogue from lyotropic systems,
a body-centered inverse micellar cubic phase (“water-in-oil”,
type III), have not actually been observed. However, the lyotropic
“oil-in-water” (type II) analogue is known.10
Results and Discussion
We have selected a poly(ethyleneimine) with degree of
polymerization 20 (DP ) 20) containing 3,4,5-tri(dodecyloxy)-
(2) For selected references on cylindrical supramolecular dendrimers self-
organized in hexagonal columnar LC lattices see: (a) Percec, V.; Johansson,
G.; Heck, J.; Ungar, G.; Batty, S. V. J. Chem. Soc., Perkin Trans. 1 1993,
1411. (b) Johansson, G.; Percec, V.; Ungar, G.; Abramic, D. J. Chem. Soc.,
Perkin Trans. 1 1994, 447. (c) Stebani, U.; Lattermann, G. AdV. Mat. 1995,
7, 578. (d) Percec, V.; Johansson, G.; Ungar, G.; Zhou, J. J. Am. Chem.
Soc. 1996, 118, 9855. (e) Pesak, D.; Moore, J. S. Angew. Chem., Int. Ed.
Engl. 1997, 36, 1636. (f) Suarez, M.; Lehn, J.-M.; Zimmerman, S. C.;
Skoulios, A.; Heinrich, B. J. Am. Chem. Soc. 1998, 120, 9526. (g) Meier,
H.; Lehmann, M. Angew. Chem., Int. Ed. Engl. 1998, 37, 643. (h) Percec,
V.; Cho, W.-D.; Mosier, P. E.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem.
Soc. 1998, 120, 11061. (i) Brewis, M.; Clarkson, G. J.; Holder, A. M.;
McKeon, N. B. Chem. Commun. 1998, 969.
(3) For selected references on cylindrical macromolecular dendrimers
self-organized in hexagonal columnar LC lattices see: (a) Percec, V.; Heck.;
J.; Lee, M.; Ungar, G.; Castillo, A. A. J. Mater. Chem. 1992, 2, 1033. (b)
Percec, V.; Heck, J.; Tomazos, D.; Falkenberg, F.; Blackwell, H.; Ungar,
G. J. Chem. Soc., Perkin Trans. 1 1993, 2799. (c) Percec, V.; Heck, J. A.;
Tomazos, D.; Ungar, G. J. Chem. Soc., Perkin Trans. 2 1993, 2381. (d)
Percec, V.; Tomazos, D.; Heck, J.; Blackwell, H.; Ungar, G. J. Chem. Soc.,
Perkin Trans. 2 1994, 31. (e) Percec, V.; Schlueter, D.; Kwon, Y. K.;
Blackwell, J.; Moller, M.; Slangen, P. J. Macromolecules 1995, 28, 8807.
(f) Johansson, G.; Percec, V.; Ungar, G.; Zhou, J. P. Macromolecules 1996,
29, 646. (g) Percec, V.; Schlueter, D.; Ronda, J. C.; Johansson, G.; Ungar,
G.; Zhou, J. P. Macromolecules 1996, 29, 1464. (h) Percec, V.; Schlueter,
D. Macromolecules 1997, 30, 5783. (i) Percec, V.; Ahn, C.-H.; Cho, W.-
D.; Jamieson, A. M.; Kim, J.; Leman, T.; Schmidt, M.; Gerle, M.; Moller,
M.; Prokhorova, S. A.; Sheiko, S. S.; Cheng, S. Z. D.; Zhang, A.; Ungar,
G.; Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 8619. (j) Prokhorova,
S. A.; Sheiko, S. S.; Moller, M.; Ahn, C.-H.; Percec, V. Macromol. Rapid
Commun. 1998, 19, 359. (k) Percec, V.; Schlueter, D.; Ungar, G.; Cheng,
S. Z. D.; Zhang, A. Macromolecules 1998, 31, 1745. (l) Prokhorova, S.
A.; Sheiko, S. S.; Ahn, C.-H.; Percec, V.; Moller, M. Macromolecules 1999,
32, 2653.
(4) For spherical supramolecular dendrimers self-organized in a Pm3hn
cubic LC lattice see: Balagurusamy, V. S. K.; Ungar, G.; Percec, V.;
Johansson, G. J. Am. Chem. Soc. 1997, 119, 1539.
(5) For macromolecular dendrimers that change their shape from spherical
to cylindrical by increasing their degree of polymerization see: (a) Percec,
V.; Ahn, C.-H.; Ungar, G.; Yeardley, D. J. P.; Moller, M.; Sheiko, S. S.
Nature 1998, 391, 161. (b) Yin, R.; Zhu, Y.; Tomalia, D. A. J. Am. Chem.
Soc. 1998, 120, 2678.
(6) For cylindrical and spherical supramolecular dendrimers that change
their shapes as a function of generation number see: (a) Hudson, S. D.;
Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.; Ungar, G.; Balaguru-
samy, V. S. K. Science 1997, 278, 449. (b) Percec, V.; Cho, W.-D.; Mosier,
P. E.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 11061.
(7) For the co-assembly of a hexagonal columnar LC superlattice and
the demonstration of the synthetic capabilities of minidendritic building
blocks see: Percec, V.; Ahn, C.-H.; Bera, T. K.; Ungar, G.; Yeardley, D.
J. P. Chem. Eur. J. 1999, 5, 1070.
benzoyl minidendritic side groups [poly(t12-APOX)] to dem-
onstrate this cubic LC phase. The present cubic phase has been
observed in a large number of supramolecular dendrimers.
However, we have decided to use this polymer for structural
characterization because of its ability to align. The synthesis of
the cyclic imino ether monomer and its living cationic ring-
opening polymerization are outlined in Scheme 2. Oligo- and
poly(ethyleneimine) with minidendritic side groups were in-
vestigated simultaneously in several different laboratories.11
Most of them exhibit a hexagonal columnar LC phase.
The differential scanning calorimetry trace of poly(t12-
APOX) (Figure 1) shows two endothermic transitions on
heating: one at -12 °C (∆H ) 19.5 J/g), into the thermotropic
LC phase, and another at 131 °C (∆H ) 1.7 J/g), into the
isotropic liquid. On cooling the reverse sequence of transitions
occurs, with a small hysteresis (exothermic peaks at 122 and
-16 °C). Thermal optical polarized microscopy of poly(t12-
(8) For additional examples of LCs generated with the aid of miniden-
drons see: (a) Zheng, H.; Swager, T. M. J. Am. Chem. Soc. 1994, 116, 77.
(b) van Nunen, J. L. M.; Folmer, B. F. B.; Nolte, R. J. M. J. Am. Chem.
Soc. 1997, 119, 283. (c) Tschierske, C. J. J. Mat. Chem. 1998, 8, 1485. (d)
Pegenan, A.; Cheng, X. H.; Tschierske, C.; Goring, P.; Diele, S. New J.
Chem. 1999, 23, 465.
(9) (a) Jiang, D.-L.; Aida, T. Nature 1997, 388, 454. (b) Sooklal, K.;
Hanus, L. H.; Ploehn, H. J.; Murphy, C. J. AdV. Mat. 1998, 10, 1083. (c)
Zhao, M.; Sun, Z. L.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120, 4877.
(d) Balogh, L.; Tomalia, D. A. J. Am. Chem. Soc. 1998, 120, 4877. (e)
Kawa, M.; Fre´chet, J. M. J. Chem. Mater. 1998, 10, 286. (f) Bao, Z.;
Amundson, K. R.; Lovinger, A. J. Macromolecules 1998, 31, 8647.
(10) Gulik, A.; Delacroix, H.; Kirschner, G.; Luzzati, V. J. Phys. II
(France) 1995, 5, 445.
(11) (a) Fischer, H.; Ghosh, S. S.; Heiney, P. A.; Maliszewskyj, N. C.;
Plesnivy, T.; Ringsdorf, H.; Seitz, M. Angew. Chem., Int. Ed. Engl. 1995,
34, 795. (b) Fischer, H.; Plesnivy, T.; Ringsdorf, H.; Seitz, M. J. Chem.
Soc., Chem. Commun. 1995, 1615. (c) Stebani, U.; Latterman, G.; Festag,
R.; Wittemberg, M.; Wendorff, J. H. J. Mater. Chem. 1995, 5, 2247. (d)
Stebani, U.; Latterman, G. AdV. Mat. 1995, 7, 578. (e) Seitz, M.; Plesnivy,
T.; Schimossek, K.; Edelmann, M.; Ringsdorf, H.; Fischer, H.; Uyama, H.;
Kobayashi, S. Macromolecules 1996, 29, 6560. (f) Ungar, G.; Abramic,
D.; Percec, V.; Heck, J. A. Liq. Cryst. 1996, 21, 73. (g) Johansson, G.
Ph.D. Thesis Case Western Reserve University, Cleveland, OH, August
1996. (h) Percec, V.; Johansson, G.; Schlueter, D.; Ronda, J. C.; Ungar, G.
Macromol. Symp. 1996, 101, 43. (i) Stebani, U.; Latterman, G.; Wittemberg,
M.; Wendorff, J. H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1858. (j) Fischer,
H.; Plesnivy, T.; Ringsdorf, H.; Seitz, M. J. Mater. Chem. 1998, 8, 343.