Kato et al.
transfer (CT) interaction.5 In the CT interaction, aromatic
diimide-based macrocycles with a strong electron-withdrawing
properties have been widely used for the creation of the above
supramolecular structures1,6-9 and investigation of transannular
interactions.10-12 For example, the construction of aromatic-
diimide based macrocycles is a key synthetic procedure for
various neutral [2]catenanes by taking advantage of the CT
interaction between the electron-rich aromatic host and an
included electron-deficient aromatic diimide derivatives as a
guest.7,8 New supramolecular assemblies such as [3]pseudo-
rotaxane13 and macrocycle-tweezer complexes14 have been
successfully synthesized by using this methodology. The
aromatic diimide-based macrocycles with a planar chirality have
recently been reported.15 Lately, we have reported the first
FIGURE 1. Structures of [2 + 2] pyromellitic diimide-based cyclo-
phane 1 and acyclic pyromellitic dimide derivative 2.
(2) For reviews of hydrogen-bonded assemblies, see: (a) Conn, M. M.;
Rebek, J., Jr. Chem. ReV. 1997, 97, 1647-1668. (b) Rebek, J., Jr. Acc.
Chem. Res. 1999, 32, 278-286. (c) Rebek, J., Jr. Chem. Commun. 2000,
637-643. (d) Greig, L. M.; Philp, D. Chem. Soc. ReV. 2001, 30, 287-302.
(e) Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem., Int. Ed.
2001, 40, 2382-2426.
example of “cyclophanes within cyclophanes” that has been
confirmed by X-ray crystallography and whose driving force
is a CT interaction between an aromatic diimide and a benzene
ring.1 The created supramolecular structures would be consid-
ered as attractive functional materials due to the presence of
photophysically and electrochemically active aromatic diim-
ides.16,17 Therefore, it is important to understand the nature of
the relationship between the activities and molecular structures
of aromatic diimide-based macrocycles as structural components
for supramolecular structures. Furthermore, aromatic diimides,
whose conformation is controlled by 2-tert-butylphenyl groups
at the nitrogen atoms, have been reported to form sandwich-
like clathrate compounds and a 2D network by a combination
of CT interactions, CH-π interactions, and hydrogen bonding.18
In this context, our interest in the electroscopic and electro-
chemical properties of the aromatic diimide-based macrocycles
and their formation of new-type supramolecular assemblies via
noncovalent interactions led us to design and synthesize the
simple [2 + 2] pyromellitic diimide-based cyclophane 1 (Figure
1). The high solubility in common organic solvents due to the
attachment of butoxy groups to the benzene unit should allow
the investigation of the electroscopic and electrochemical
properties under various solution conditions, and the introduction
of a methylene linker between the pyromellitic diimide moiety
and the benzene unit should leave the sufficient electron-
withdrawing property to the pyromellitic diimide moiety for the
formation of supramolecular assemblies. We now report here
the synthesis and structural properties of 1 and its electroscopic
and electrochemical properties with the acyclic N,N′-bis(2-
methoxybenzyl)pyromellitic diimide 2 as a reference. We will
then describe the formation of clathrate compounds formed of
1 with naphthols and their electroscopic and electrochemical
properties based on the UV/vis spectra, MO calculations, cyclic
voltammograms, and X-ray crystallographic analyses. Finally,
the redox modulation of 1 and 2 via noncovalent interactions
with naphthols will be demonstrated in cyclic voltammetry
measurements.
(3) Cubberley, M. S.; Iverson, B. L. J. Am. Chem. Soc. 2001, 123, 7560-
7563 and references therein.
(4) For reviews of metal-coordinative assemblies, see: (a) Fujita, M.
Chem. Soc. ReV. 1998, 27, 417-425. (b) Caulder, D. L.; Raymond, K. N.
Acc. Chem. Res. 1999, 32, 975-982. (c) Caulder, D. L.; Raymond, K. N.
J. Chem. Soc., Dalton Trans. 1999, 1185-1200. (d) Seidel, S. R.; Stang,
P. J. Acc. Chem. Rec. 2002, 35, 972-983. (e) Vilar, R. Angew. Chem., Int.
Ed. 2003, 42, 1460-1477. (f) Fujita, M.; Tominaga, M.; Hori, A.; Therrien,
B. Acc. Chem. Res. 2005, 38, 371-380.
(5) For reviews of aromatic interactions, see: (a) Hunter, C. A.; Lawson,
K. R.; Perkins, J.; Urch, C. J. J. Chem Soc., Perkin Trans. 2 2001, 651-
669. (b) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem., Int.
Ed. 2003, 42, 1210-1250. (c) Kla¨rner, F.-G.; Kahlert, B. Acc, Chem. Res.
2003, 36, 919-932. (d) Zhao, D.; Moore, J. S. Chem. Commun. 2003, 807-
818.
(6) For molecular receptors, see: (a) Jazwinski, J.; Blacker, A. J.; Lehn,
J.-M.; Cesario, M.; Guilhem, J.; Pascard, C. Tetrahedron Lett. 1987, 28,
6057-6060. (b) Anderson, H. L.; Hunter, C. A.; Meah, M. N.; Sanders, J.
K. M. J. Am. Chem. Soc. 1990, 112, 5780-5789. (c) Bilyk, A.; Harding,
M. M. Chem. Commun. 1995, 1697-1698. (d) Houghton, M. A.; Bilyk,
A.; Harding, M. M.; Turner, P.; Hambley, T. W. J. Chem. Soc., Dalton.
Trans. 1997, 2725-2733. (e) Chen, G.; Lean, J. T.; Alcala´, M.; Mallouk,
T. E. J. Org. Chem. 2001, 66, 3027-3034.
(7) For review of catenanes and oligocatenanes, see: Raehm, L.;
Hamilton, D. G.; Sanders, J. K. M. Synlett 2002, 1743-1761.
(8) For neutral [2]catenanes, see: (a) Hamilton, D. G.; Sanders, J. K.
M.; Davies, J. E.; Clegg, W.; Teat, S. J. Chem. Commun. 1997, 897-898.
(b) Hamilton, D. G.; Davies, J. E.; Prodi, L.; Sanders, J. K. M. Chem. Eur.
J. 1998, 4, 608-620. (c) Zhang, Q.; Hamilton, D. G.; Feeder, N.; Teat, S.
J.; Goodman, J. M.; Sanders, J. K. M. New. J. Chem. 1999, 23, 897-903.
(d) Hamilton, D. G.; Prodi, L.; Feeder, N.; Sanders, J. K. M. J. Chem.
Soc., Perkin Trans. 1 1999, 1057-1065. (e) Hamilton, D. G.; Montalti,
M.; Prodi, L.; Fontani, M.; Zanello, P.; Sanders, J. K. M. Chem. Eur. J.
2000, 6, 608-617. (f) Hansen, J. G.; Feeder, N.; Hamilton, D. G.; Gunter,
M. J.; Becher, J.; Sanders, J. K. M. Org. Lett. 2000, 2, 449-452. (g) Gunter,
M. J.; Farquhar, S. M. Org. Biomol. Chem. 2003, 1, 3450-3457. (h) Fallon,
G. D.; Lee, M. A.-P.; Langford, S. J.; Nichols, P. J. Org. Lett. 2004, 6,
655-658.
(9) For [2]rotaxanes, see: (a) Nakamura, Y.; Minami, S.; Iizuka, K.;
Nishimura, J. Angew. Chem., Int. Ed. 2003, 42, 3158-3162. (b) Wang,
X.-Z.; Li, X.-Q.; Shao, X.-B.; Zhao, X.; Deng, P.; Jiang, X.-K.; Li, Z.-T.;
Chen, Y.-Q. Chem. Eur. J. 2003, 9, 2904-2913. (c) Iijima, T.; Vignon, S.
A.; Tseng, H.-R.; Jarrosson, T.; Sanders, J. K. M.; Marchioni, F.; Venturi,
M.; Apostoli, E.; Balzani, V.; Stoddart, J. F. Chem. Eur. J. 2004, 10, 6375-
6392.
(15) Degenhardt, C. F., III; Smith, M. D.; Shimizu, K. D. Org. Lett.
2002, 4, 723-726.
(16) For review of perylene bisimide dyes, see: Wu¨rthner, F. Chem.
Commun. 2004, 1564-1579.
(17) (a) Wu¨rthner, F.; Sautter, A.; Schmid, D.; Weber, P. J. A. Chem.
Eur. J. 2001, 7, 894-902. (b) You, C.-C.; Wu¨rthner, F. J. Am. Chem. Soc.
2003, 125, 9716-9725. (c) Wu¨rthner, F.; Sautter, A. Org. Biomol. Chem.
2003, 1, 240-243.
(18) (a) Kishikawa, K.; Tsubokura, S.; Kohmoto, S.; Yamamoto, M.;
Yamaguchi, K. J. Org. Chem. 1999, 64, 7568-7578. (b) Kishikawa, K.;
Iwashima, C.; Kohmoto, S.; Yamaguchi, K.; Yamamoto, M. J. Chem. Soc.,
Perkin Trans. 1 2000, 2217-2221.
(10) Borkent, J. H.; Verhoeven, J. W.; de Boer, Th. J. Chem. Phys. Lett.
1976, 42, 50-53.
(11) Staab, H. A.; Nikolic, S.; Krieger, C. Eur. J. Org. Chem. 1999,
1459-1470.
(12) Hansen, J. G.; Bang, K. S.; Thorup, N.; Becher, J. Eur. J. Org.
Chem. 2000, 2135-2144.
(13) Colquhoun, H. M.; Williams, D. J.; Zhu, Z. J. Am. Chem. Soc. 2002,
124, 13346-13347.
(14) (a) Colquhoun, H. M.; Zhu, Z.; Williams, D. J. Org. Lett. 2003, 5,
4353-4356. (b) Colquhoun, H. M.; Zhu, Z. Angew. Chem., Int. Ed. 2004,
43, 5040-5045.
4724 J. Org. Chem., Vol. 71, No. 13, 2006