1160
T. M. Sielecki et al. / Bioorg. Med. Chem. Lett. 11 (2001) 1157–1160
vitamins. Cultures were weaned onto 10% FBS over a two
week period before experiments.
Acknowledgements
8. (a) DeBondt, H. L.; Rosenblatt, J.; Jancarik, J.; Jones,
H. D.; Morgan, D. O.; Kim, S.-H. Nature 1993, 363, 595. (b)
Schulze-Gahmen, U.; DeBondt, H. L.; Kim, S.-H. J. Med.
Chem. 1996, 39, 4540.
The authors would like to thank Marc Arnone, Melissa
J. Ashbacher, Debra Doleniak, Laura Handel, Marv
Kendal, Lynn Leffet, Diane Sharp, Fariba Shoarinejad,
Lisa Sisk, Marge Stafford, and Ann Klemm for their
efforts in carrying out the in vitro assays.
9. Protein purification, crystallization, and structure determi-
nation: CDK2 protein was prepared and purified as descri-
bed10 with slight modifications including the addition of 10%
(v/v) glycerol during the SP-sepharose and ATP-agarose col-
umn steps. CDK2 protein was concentrated to 6 mg/mL using
a Collodion concentrator against 10 mM HEPES pH 7.4,
15 mM NaCl. Crystals were grown by vapor diffusion at 18 ꢀC
from sitting drops containing premixed and filtered (0.22 mm)
solutions of 3.0 mg/mL CDK2, 32.5 mM HEPES (pH 7.4),
11.3 mM NaCl, 12.5 mM ammonium acetate, 2 mM DTT, 2–
4% PEG 4000 against 100 mM HEPES (pH 7.4), 50 mM
ammonium acetate, 2 mM DTT, 4–14% PEG 4000. CDK2
crystals were transferred to a solution containing 10 mM
HEPES (pH 7.4), 15 mM NaCl, 1.0 mM 51, 5.0% DMSO and
soaked with inhibitor for 4 days. Crystals of CDK2/51 were
briefly transferred into cryo-protectant (10 mM HEPES pH
7.4, 15 mM NaCl, 25% MPD) and flash frozen in liquid
nitrogen in preparation for cryo-data collection. Diffraction
data were collected at ꢃ170 ꢀC at the DND-CAT beam line,
Advanced Photon Source, Argonne National Laboratories.
Data were processed and scaled with HKL.11 Crystals were
orthorhombic and belonged to the space group P212121 with
unit cell dimensions a=71.96 A, b=73.51 A, c=54.28 A,
a=b=g=90.0ꢀ. Data is 98% complete to 2.0 A resolution
with an overall R-merge of 8.0%. Initial rigid body refine-
ments12 of the apo CDK28a structure against the CDK2/51
data were unsuccessful (R-factor=47.0%). A translation
search12 found the highest peak in fractional coordinates at
x=0.47, y=0.019, z=0.000. Subsequent rigid body refine-
ments lowered the R-factor to 33.2%. The Fo-Fc electron
density map revealed the position of inhibitor in the ATP
binding pocket along with a water molecule sandwiched
between the inhibitor and backbone oxygen of Glu81. The
CDK2 + 51 + HOH structure (Fig. 1) was refined with
XPLOR12 to a final R-factor of 21.9% and an R-free of
27.4%.
References and Notes
1. Pines, J. Adv. Cancer Res. 1995, 66, 181.
2. Sielecki, T. M.; Boylan, J. F.; Benfield, P. A.; Trainor, G. L.
J. Med. Chem. 2000, 43, 1.
3. Senderowicz, A. M.; Headlee, D.; Stinson, S. F.; Lush,
R. M.; Kalil, N.; Villalba, L.; Hill, K.; Steinberg, S. M.; Figg,
W. D.; Tompkins, A.; Arbuck, S. G.; Sausville, E. A. J. Clin.
Oncol. 1998, 16, 2986.
4. Zaharevitz, D.; Kunick, C.; Schultz, C.; Meijer, L.; Leost,
M.; Gussio, R.; Senderowicz, A.; Lahusen, T.; Sausville, E.
Amer. Assoc. Cancer Res., April 10–14, 1999, Philadelphia,
PA.
5. (a) Vesely, J.; Havlicek, L.; Strnad, M.; Blow, J. J.;
Donella-Deana, A.; Pinna, L.; Letham, D. S.; Kato, J. Y.;
Detivaud, L.; Leclerc, S.; Meijer, L. Eur. J. Biochem. 1994,
224, 771. (b) Abraham, R. T.; Acquarone, M.; Andersen, A.;
Asensi, A.; Belle, R.; Berger, F.; Bergounioux, C.; Brunn, G.;
Buquet-Fagot, C.; Fagot, D.; Glab, N.; Goudeau, M.; Guer-
rier, P.; Houghton, P. J.; Hendriks, H.; Kloareg, B.; Lippai,
M.; Marie, D.; Maro, B.; Meijer, L.; Mester, J.; Mulner-Lor-
illon, O.; Poulet, S. A.; Schierenberg, E.; Schutte, B.; Vaulot,
D.; Verlhac, M. H. Biol. Cell 1995, 83, 105. (c) Schutte, B.;
Nieland, L.; van Engeland, M.; Henfling, M.; Meijer, L.;
Ramaekers, F. Exp. Cell. Res. 1997, 236, 4.
6. (a) Singh, P.; Kumar, R. J. Enzyme Inhib. 1998, 13, 125. (b)
Gibson, K. H.; Brundy, W.; Godfrey, A. A.; Woodburn, J. R.;
Ashton, S. E.; Curry, B. J.; Scarlett, L.; Barker, A. J.; Brown,
D. S. Bioorg. Med. Chem. Lett. 1997, 7, 2723. (c) Thompson,
A. M.; Murray, D. K.; Elliott, W. L.; Fry, D. W.; Nelson,
J. A.; Showalter, H. D.; Roberts, B. J.; Vincent, P. W.; Denny,
W. A. J. Med. Chem. 1997, 40, 3915. (d) Myers, M. R.; Setzer,
N. N.; Spada, A. P.; Persons, P. E.; Ly, C. Q.; Maguire, M. P.;
Zulli, A. L.; Cheney, D. L.; Zilberstein, A.; Johnson, S. E.;
Franks, C. F.; Mitchell, K. J. Bioorg. Med. Chem. Lett. 1997,
7, 421. (e) Myers, M. R.; Setzer, N. N.; Spada, A. P.; Zulli,
A. L.; Hsu, C. J.; Zilberstein, A.; Johnson, S. E.; Hook, L. E.;
Jacoski, M. V. Bioorg. Med. Chem. Lett. 1997, 7, 417.
7. Human foreskin fibroblasts (line AG01523) were purchased
from the N.I.A. Aging Cell Culture Repository, Coriell Insti-
tute for Medical Research (Camden, NJ). Cells were routinely
grown in Eagle’s MEM containing 20% FBS and a 2ꢂ con-
centration of essential and non-essential amino acids and
10. Rosenblatt, J.; DeBondt, H.; Jancarik, J.; Morgan, D. O.;
Kim, S.-H. J. Mol. Biol. 1993, 230, 1317.
11. Otwinowski, Z.; Minor, W. In Methods in Enzymology
Macromolecular Crystallography, part A; Carter, C. W., Jr.,
Sweet, R. M., Eds.; Academic: New York, 1997; Vol. 276, pp
307–326.
12. Brunger, A. T.; Kuriyan, J.; Karplus, M. Science 1987,
¨
234, 458.
13. Shewchuk, L.; Hassell, A.; Wisely, B.; Rocque, W.;
Holmes, W.; Veal, J.; Kuyper, L. F. J. Med. Chem. 2000, 43,
133.