transition being moved to ca. 810 nm (Q-band) from the 602
nm seen for the lowest-energy Q-band of zinc tetraphe-
nylporphyrin.3 The palladium complexes of these annulated
systems were also found to behave as efficient sensitizers
for optical up-conversion via triplet-triplet annihilation when
mixed with appropriate dyes.4 Crossley and co-workers
recently reported even greater efficiency in triplet-triplet
annihilation up-conversion by using a palladium tetraqui-
noxaline porphyrin.5
Scheme 1. General Route to Disubstituted Naphthobipyrroles
Other annulated porphyrin analogues are known. These
include but are not limited to azuliporphyrin,6 phenanthroline
porphyrins,7 and benzosapphyrin.8 However, much less is
known about annulated porphycenes. In fact, to the best of
our knowledge, only the fused meso-benzoporphycenes,
dibenzoporphycene 1,9 and tetrabenzoporphycenes 210 have
been reported in the literature. On the other hand, the
interesting optical and coordination features of porphycenes11
provide an incentive to extend this limited class of com-
pounds to include other annulated porphycene derivatives.
With this goal in mind, we report here a simple and efficient
route to dinaphthoporphycenes 3a and b. We show that these
flat systems display optical features that are bathochromically
shifted compared to the parent porphycene.
The synthesis of the dinaphthoporphycenes 3a and b is
summarized in Scheme 1. It relies on the intermolecular
McMurry coupling of dialdehyde precursors pioneered by
Vogel,12 as do most other syntheses of porphycenes.13 The
problem is thus one of preparing the appropriate annulated
diformylated naphthobipyrroles. One potential precursor is
the unsubstituted 7d; this is a known compound.14 However,
this particular bipyrrole has been shown to react with various
electrophiles (diazonium salts, Vilsmeier-Haack formyla-
tion, aminomethylation reaction) predominantly at the so-
called ꢀ positions (i.e., at carbons 3 and 8);15 this makes it
less than ideal for our purposes. We therefore sought an
alternative approach that would give diformylated naphtho-
bipyrroles, such as 8a-c, wherein the reactive ꢀ positions
are blocked with alkyl groups. Here, an ancillary consider-
ation was that the judicious choice of ꢀ-substituents would
provide a means of modulating the solubility of these
intermediates, as well as that of the final porphycene targets.
(3) (a) Aleshchenkov, S. E.; Cheprakov, A. V.; Beletskaya, I. P. Dokl.
Chem. 2008, 422, 212. (b) Finikova, O. S.; Aleshchenkov, S. E.; Brinas,
R. P.; Cheprakov, A. V.; Carroll, P. J.; Vinogradov, S. A. J. Org. Chem.
2005, 70, 4617.
To create systems with high solubility in organic media,
branched alkyl chains are attractive as ꢀ-substituents. Such
branched species have been used as solubilizing groups in,
for example, polymer chemistry;16 further, one particular
branched system, 2-ethylhexane, functionalized at carbon 1
as both the halide and corresponding Grignard reagent, is
commercially available. Therefore, our initial efforts focused
on creating a bipyrrole containing this particular ꢀ-substitu-
ent. As a complement to this work, we also targeted the
synthesis of analogues bearing the smaller n-pentyl and
i-propyl substituents.
(4) Baluschev, S.; Yakutkin, V.; Miteva, T.; Avlasevich, Y.; Chernov,
S.; Aleshchenkov, S.; Nelles, G.; Cheprakov, A.; Yasuda, A.; llen, K.;
Wegner, G. Angew. Chem., Int. Ed. 2007, 46, 7693.
(5) Cheng, Y. Y.; Khoury, T.; Clady, R. G. C. R.; Tayebjee, M. J. Y.;
Ekins-Daukes, N. J.; Crossley, M. J.; Schmidt, T. W. Phys. Chem. Chem.
Phys. 2010, 12, 66.
(6) Lash, T. D.; Chaney, S. T. Angew. Chem., Int. Ed. 1997, 36, 839.
(7) (a) Ono, N.; Hironaga, H.; Ono, K.; Kaneko, S.; Murashima, T.;
Ueda, T.; Tsukamura, C.; Ogawa, T. J. Chem. Soc., Perkin Trans. 1 1996,
417. (b) Novak, B. H.; Lash, T. D. J. Org. Chem. 1998, 63, 3998.
(8) Panda, P. K.; Kang, Y.-J.; Lee, C.-H. Angew. Chem., Int. Ed. 2005,
44, 4053.
(9) (a) Vogel, E. Pure Appl. Chem. 1993, 65, 143. (b) Dobkowski, J.;
Galievsky, V.; Starukhin, A.; Vogel, E.; Waluk, J. J. Phys. Chem. A 1998,
102, 4966. (c) Dobkowski, J.; Lobko, Y.; Gawinwski, S.; Waluk, J. Chem.
Phys. Lett. 2005, 416, 128.
With the above considerations in mind, diethyl oxalate was
reacted with the requisite Grignard reagents at -78 °C in
accord with literature procedures.17 This gave the corre-
sponding ethyl R-oxocarboxylates 4a-c in good yields. Ethyl
pyruvate 4d is commercially available.
(10) Kuzuhara, D.; Mack, J.; Yamada, H.; Okujima, T.; Ono, N.;
Kobayashi, N. Chem.sEur. J. 2009, 15, 10060.
(11) Cuesta, L.; Karnas, E.; Lynch, V. M.; Chen, P.; Shen, J.; Kadish,
K. M.; Ohkubo, K.; Fukuzumi, S.; Sessler, J. L. J. Am. Chem. Soc. 2009,
131, 13538.
(12) Vogel, E.; Kocher, M.; Schmickler, H.; Lex, J. Angew. Chem., Int.
Ed. 1986, 25, 257.
(13) Sanchez-Garcia, D.; Sessler, J. L. Chem. Soc. ReV. 2008, 37, 215.
(14) Samsoniya, S. A.; Trapaidze, M. V.; Kuprashvili, N. A.; Kolesnikov,
A. M.; Suvorov, N. N. Khim. Geterotsikl. Soedin. 1985, 1222.
(15) (a) Samsoniya, S. A.; Trapaidze, M. V.; Kuprashvili, N. A.;
Samsoniya, N. Sh.; Suvorov, N. N. Khim. Geterotsikl. Soedin. 1994, 1048.
Samsoniya, S. A.; Trapaidze, M. V.; Kuprashvili, N. A. Khim. Geterotsikl.
Soedin. 1998, 942. (b) Trapaidze, M. V.; Samsoniya, S. A.; Kuprashvili,
N. A.; Mamaladze, L. M.; Suvorov, N. N. Khim. Geterotsikl. Soedin. 1988,
603.
(16) (a) Li, X.; Xiao, Y.; Qian, X. Org. Lett. 2008, 10, 2885. (b) Surin,
M.; Hennebicq, E.; Ego, C.; Marsitzky, D.; Grimsdale, A. C.; Mullen, K.;
Bredas, J.-L.; Lazzaroni, R.; Leclere, P. Chem. Mater. 2004, 16, 994.
(17) (a) Rambaud, M.; Bakasse, M.; Duguay, G.; Villieras, J. Synthesis
1988, 564. (b) Weinstock, L. M.; Currie, R. B.; Lovell, A. V. Synth.
Commun. 1981, 11, 943. (c) Rozen, S.; Ben-David, I. J. Org. Chem. 2001,
66, 496. (d) Singh, J.; Kissick, T. P.; Mueller, R. H. Org. Prep. Proc. Int.
1989, 21, 501.
Org. Lett., Vol. 12, No. 19, 2010
4425