Table 2 Photovoltaic performances and surface coverage values of
ITO/TiO /pentamer/KI–I electrolyte/graphite dye-sensitized cells
measured using a polychromatic 1.5 mW cm light source
3 G. F. Swiegers and T. J. Malefetse, Coord. Chem. Rev., 2002, 225,
91.
4 S. Schmatloch and U. S. Schubert, Chem. Unserer Zeit., 2003, 37,
2
2
2
2
1
80.
W. R. McWhinnie and J. D. Miller, Adv. Inorg. Chem. Radiochem.,
969, 11, 135.
D. J. Berg, J. M. Boncella and R. A. Anderson, Organometallics, 2002,
1, 4622.
a
22
b
c
d
211e
22
Complex jsc /mA cm
V
oc /mV ff (%) g (%) C/10
/mol cm
5
6
1
4
5
6
a
90.4
300.4
137.6
250
290
269
32.6
26.3
29.5
0.49
1.53
0.73
3.03
5.49
6.22
2
7
8
9
W. Kaim, Coord. Chem. Rev., 2002, 230, 127.
b
Short-circuit photocurrent density. Open-circuit photovoltage.
W. Kaim, Angew. Chem., Int. Ed. Engl., 1983, 22, 171.
S. Serroni, S. Campagna, F. Puntoriero, C. Di Pietro,
N. D. McClenaghan and F. Loiseau, Chem. Soc. Rev., 2001, 30,
c
d
Fill factor. Photoconversion efficiency of the cell. Surface
e
coverage.
367.
10 J.-P. Launay, Chem. Soc. Rev., 2001, 30, 386.
substrate in a 0.2 mM MeCN solution of each one of the
11 S.-H. Hwang, C. N. Moorefield, F. R. Fronczek, O. Lukoyanova,
L. Echegoyen and G. R. Newkome, Chem. Commun., 2005, 713.
12 S. J. Lee, A. Hu and W. Lin, J. Am. Chem. Soc., 2002, 124, 12948.
34
metallopentacycles) properly fitted in a solar cell device, were
2
2
conducted using a polychromatic (1.5 mW cm ) incident light
source and an electrolyte containing 0.3 M KI + 0.015 M I
dissolved in a 4 to 1 ratio of propylene and ethylene carbonate.
The surface coverage (C) of each metallopentacycle on the TiO
electrode was calculated using UV-vis spectroscopy experiments as
1
3 F. A. Cotton, C. Lin and C. A. Murillo, J. Am. Chem. Soc., 2001, 123,
670.
2
2
14 F. A. Cotton, L. M. Daniels, C. Lin, C. A. Murillo and S.-Y. Yu,
J. Chem. Soc., Dalton Trans., 2001, 502.
5 H. Gang, G. Dong, D. Chun-ying, M. Hong and M. Qing-jin, New J.
2
1
Chem., 2002, 26, 1371.
6 S. J. Lee and W. Lin, J. Am. Chem. Soc., 2002, 124, 4554.
3
5
reported by Gr a¨ tzel et al. Notably, the values obtained (Table 2)
are fairly close to each other, thus supporting the similar structure
and dimensions of compounds 4–6. Discharge experiments
conducted with these devices also allowed the calculation of some
1
17 X. Liu, C. L. Stern and C. A. Mirkin, Organometallics, 2002, 21, 1017.
1
8 J. J. Pak, J. Greaves, D. J. McCord and K. J. Shea, Organometallics,
002, 21, 3552.
9 S.-S. Sun, J. A. Anspach and A. J. Lees, Inorg. Chem., 2002, 41,
862.
2
1
3
4
of the values in Table 2. Whereas the fill factor (ff) of the three
1
electrodes studied here remains similar, the Ru(II) metallopenta-
20 G. R. Newkome, T. J. Cho, C. N. Moorefield, G. R. Baker,
M. J. Saunders, R. Cush and P. S. Russo, Angew. Chem., Int. Ed.,
cycle showed the best results for the short circuit photocurrent (jsc
)
1999, 38, 3717.
as well as the open circuit photopotential (Voc). Also, total
photoconversion efficiency of the cell (g) using electromagnetic
radiation spanning the visible region of the spectrum exhibited the
highest value in the case of the Ru(II) pentamer 5.
2
1 G. R. Newkome, T. J. Cho, C. N. Moorefield, R. Cush, P. S. Russo,
L. A. God ´ı nez, M. J. Saunders and P. Mohapatra, Chem. Eur. J., 2002,
8, 2946.
2 G. R. Newkome, T. J. Cho, C. N. Moorefield, P. P. Mohapatra and
2
L. A. God ´ı nez, Chem. Eur. J., 2004, 10, 1493.
In summary, we have demonstrated the formation and
characterization of a series of unique, self-assembled, metallopen-
tacycles. Employing terpyridine–metal(II)–terpyridine connectivity,
these complexes are stable and irreversible under the reaction
conditions. The structures of these pentagonal architectures were
2
3 B. Grossmann, J. Heinze, E. Herdtweck, H. Noth, M. Schwenk,
W. Wachter and B. Weber, Angew. Chem., Int. Ed. Engl., 1997, 36, 387.
24 P. L. Jones, K. J. Byrom, J. C. Jeffey, J. A. McCleverty and M. D. Ward,
Chem. Commun., 1997, 1361.
25 H. Jiang and W. Lin, J. Am. Chem. Soc., 2003, 25, 8084.
26 B. Hasenknopf, J.-M. Lehn, B. O. Kneisel, G. Baum and D. Fenske,
1
13
characterized by means of H and C NMR, UV-vis spectro-
scopy, and mass spectroscopy. Preliminary studies of photoelec-
trochemical performance for the metallopentacycles demonstrated
their potential for solar cell development. Further experiments are
currently ongoing to investigate the electroluminescence behavior
using LED devices.
Angew. Chem., Int. Ed. Engl., 1996, 35, 1838.
27 J. A. Joule, Adv. Heterocycl. Chem., 1984, 35, 83.
28 E. C. Constable, C. E. Housecroft, M. Neuburger, A. G. Schneider and
M. Zehnder, J. Chem. Soc., Dalton Trans., 1997, 2427.
9 M. Beley, J.-P. Collin, J.-P. Sauvage, F. Heisel and A. Miech, J. Chem.
2
Soc., Dalton Trans., 1991, 3157.
30 X.-Y. Wang, A. D. Guerzo and R. H. Schmehl, Chem. Commun., 2002,
2344.
The authors gratefully thank the National Science Foundation
31 N. W. Alcock, P. R. Barker, J. M. Haider, M. J. Hannon, C. L. Painting,
(DMR-041780, INT-0405242), the Air Force Office of Scientific
Z. Pikramenou, E. A. Plummer, K. Rissanen and P. Saarenketo,
J. Chem. Soc., Dalton Trans., 2000, 1447.
2 G. D. Storrier, S. B. Colbran and D. C. Craig, J. Chem. Soc., Dalton
Research (F49620-02-1-0428,02), the Ohio Board of Regents and
the Mexican Council for Science and Technology (CONACyT),
for financial support.
3
Trans., 1998, 1351.
3 A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals
3
and Applications, John Wiley & Sons, New York, 2nd edn, 2001.
4 E. Bustos, J. Manr ´ı quez, L. Echegoyen and L. A. God ´ı nez, Chem.
Commun., 2005, 1613.
3
Notes and references
1
2
B. J. Holliday and C. A. Mirkin, Angew. Chem., Int. Ed., 2001, 40, 2022.
S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100,
35 P. Bonh oˆ te, E. Gogniat, S. Tingry, C. Barb e´ , N. Vlachopoulos,
F. Lenzmann, P. Comte and M. Gr a¨ tzel, J. Phys. Chem. B, 1998, 102,
1498.
853.
4
674 | Chem. Commun., 2005, 4672–4674
This journal is ß The Royal Society of Chemistry 2005