5 X. Ji, R. N. Armstrong and G. L. Gilliland, Biochemistry, 1993, 32,
12949; L. Prade, R. Huber, T. H. Manoharan, W. E. Fahl and
W. Reuter, Structure, 1997, 5, 1287.
6 S. S. Tang, C. C. Lin and G. G. Chang, J. Protein Chem., 1994, 13,
609.
7 T. M. Buetler and D. L. Eaton, Environ. Carcinogen. Ecotoxicol.
Rev., 1992, C10, 181.
8 X. Ji, E. C. von Rosenvinge, W. W. Johnson, S. I. Tomarev,
J. Piatigorsky, R. N. Armstrong and G. L. Gilliland, Biochemistry,
1995, 34, 5317.
9 S. I. Tomarev, R. D. Zinovieva and J. Piatigorsky, J. Biol. Chem.,
1991, 266, 24226.
10 S. S. Tang and G. G. Chang, Biochem. J., 1995, 309, 347.
11 S. S. Tang and G. G. Chang, Biochem. J., 1996, 315, 599.
12 S. S. Tang and G. G. Chang, J. Org. Chem., 1995, 60, 6183.
13 G. G. Chang and S. L. Shiao, Eur. J. Biochem., 1994, 220, 861.
14 M. M. Bradford, Anal. Biochem., 1976, 72, 248.
15 P. L. Luisi and B. Steinmann-Hofmann, Methods Enzymol., 1987,
136, 188.
16 A. Fersht, Enzyme Structure and Mechanism, 2nd edn., Freeman,
New York, 1985, p. 182.
17 M. Waks, Proteins, 1986, 1, 4; P. L. Luisi and L. J. Magid, CRC Crit.
Rev. Biochem., 1986, 20, 409; R. Bru, A. Sanchez-Ferrer and
F. Garcia-Carmona, Biochem. J., 1995, 310, 721; M. T. Gómez-
Puyon and A. Gómez-Puyon, Crit. Rev. Biochem. Mol. Biol., 1998,
33, 53.
18 S. Liu, P. Zhang, X. Ji, W. W. Johnson, G. L. Gilliland and R. N.
Armstrong, J. Biol. Chem., 1992, 267, 4296.
Scheme
4
Schematic model for the water–cetylbenzyldimethyl-
ammonium chloride–2,2,4-trimethylpentane reverse micelles. The
entrapment of the hydrophilic substrate glutathione (GSH) in the water
pool (gray area) of the reverse micelles mimics the active centre of the
glutathione transferase. The various hydrophobic substrates, e.g., 2,4-
dinitrochlorobenzene (CDNB), were dissolved in the organic solvent
2,2,4-trimethylpentane reflecting the broad substrate specificities of the
enzyme. This model suggests that GST is not an efficient detoxification
enzyme. Proximity and orientation might not be the important factors
in the GST-catalysed reaction. Stabilization of the negatively charged
Meisenheimer complex in a positively charged environment (Scheme 2)
may contribute to the major factor in the rate enhancement.
19 C. Xia, D. J. Meyer, H. Chen, P. Reinemer, R. Huber and
B. Ketterer, Biochem. J., 1993, 293, 357.
20 M. Orozco, C. Vega, A. Parraga, I. Garcia-Saez, M. Coll, S. Walsh,
T. J. Mantle and F. Javier Luque, Proteins, 1997, 28, 530.
21 A. J. Oakley, M. Lo Bello, A. Battistoni, G. Ricci, J. Rossjohn,
H. O. Villar and M. W. Parker, J. Mol. Biol., 1997, 274, 84.
22 M. Widersten, R. H. Kolm, R. Björnestedt and B. Mannervik,
Biochem. J., 1992, 285, 377.
23 R. Björnestedt, G. Stenberg, M. Widersten, P. G. Board, I. Sinning,
T. A. Jones and B. Mannervik, J. Mol. Biol., 1995, 247, 765.
24 D. A. Dougherty, Science, 1996, 271, 163.
25 G. Xiao, S. Liu, X. Ji, W. W. Johnson, J. Chen, J. F. Parsons,
W. J. Stevens, G. L. Gilliland and R. N. Armstrong, Biochemistry,
1996, 35, 4753; E. C. Dietze, C. Ibarra, M. J. Dabrowski, A. Bird
and W. M. Atkin, Biochemistry, 1996, 35, 11938.
catalysis. This low catalytic rate is compensated for by the pres-
ence of large amounts of the enzyme in cells.1,32 GST was esti-
mated to constitute as much as 5% of the total soluble protein
in cells.1,32 Our model provides a quantitative evaluation of the
previous oil-lake model.
26 C. C. Chuang, S. H. Wu, S. H. Chiou and G. G. Chang, Biophys. J.,
1999, 76, 679.
Acknowledgements
This work was supported by the Frontier Science Project
(Grant NSC 87-2312-B016-008) from the National Science
Council, Republic of China. This paper is derived from the
thesis presented by J. Y. Liou in partial fulfillment of the
requirements for an M. S. degree (Biochemistry), National
Defense Medical Center, Taipei.
27 H. W. Dirr, P. Reinemer and R. Huber, Eur. J. Biochem., 1994, 220,
645; R. N. Armstrong, Adv. Enzymol. Relat. Areas Mol. Biol., 1994,
69, 1; I. Sinning, G. J. Kleywegt, S. W. Cowan, P. Reinemer,
H. W. Dirr, R. Huber, G. L. Gilliland, R. N. Armstrong, X. Ji,
P. G. Board, B. Olin, B. Mannervik and T. A. Jones, J. Mol. Biol.,
1993, 232, 192; M. C. J. Wilce, P. G. Board, S. C. Feil and
M. W. Parker, EMBO J., 1995, 14, 2133.
28 A. G. Clark and M. Sinclair, Biochem. Pharmacol., 1988, 37, 259.
29 R. Wolfenden and L. Frick, in Enzyme Mechanism, M. I. Page and
A. Williams, Eds., Royal Society of Chemistry, London, United
Kingdom, 1987, p. 97; J. Kraut, Science, 1988, 242, 533; J. Kyte,
Mechanism in Protein Chemistry, Garland Publishing, New York,
1995, p. 199; A. S. Mildvan, Proteins, 1997, 29, 401.
30 R. H. Abeles, P. A. Frey and W. P. Jencks, Biochemistry, Jones and
Bartlett Publishers, Boston, 1992, p. 124.
References
1 For some reviews, see W. B. Jakoby and D. M. Ziegler, J. Biol.
Chem., 1990, 265, 20715; D. J. Waxman, Cancer Res., 1990, 50, 6449;
T. H. Rushmore and C. B. Pickett, J. Biol. Chem., 1993, 268, 11475;
J. D. Hayes and D. J. Pulford, CRC Crit. Rev. Biochem. Mol. Biol.,
1995, 30, 445; R. N. Armstrong, Chem. Res. Toxicol., 1997, 10, 2.
2 G. F. Graminski, Y. Kubo and R. N. Armstrong, Biochemistry, 1989,
28, 3562; W. M. Atkins, R. W. Wang, A. W. Bird, D. J. Newton and
A. Y. H. Lu, J. Biol. Chem., 1993, 268, 19188; M. R. Crampton and
S. D. Lord, J. Chem. Soc., Perkin Trans. 2, 1997, 369.
31 A. Warshel, F. Sussman and J.-K. Hwang, J. Mol. Biol., 1988, 201,
139; A. Warshel, J. Biol. Chem., 1998, 273, 27035.
32 W. B. Jakoby, in Enzyme Mechanism, M. I. Page and A. Williams,
Eds., Royal Society of Chemistry, London, United Kingdom, 1987,
p. 468.
3 T. Ishikawa, Trends Biochem. Sci., 1992, 17, 463.
4 G. F. Graminski, P. H. Zhang, M. A. Sesay, H. L. Ammon and
R. N. Armstrong, Biochemistry, 1989, 28, 6252.
Paper 9/03011E
2176
J. Chem. Soc., Perkin Trans. 2, 1999, 2171–2176