K. Akagawa et al. / Tetrahedron Letters 52 (2011) 770–773
773
1
994, 116, 4077; (e) Carreira, E. M.; Singer, R. A.; Lee, W. J. Am. Chem. Soc. 1994,
L. U.; Vogt, H.; Madsen, R. J. Am. Chem. Soc. 2008, 130, 17672; (l) Ghosh, S. C.;
Muthaiah, S.; Zhang, Y.; Xu, X.; Hong, S. H. Adv. Synth. Catal. 2009, 351, 2643;
(m) Zweifel, T.; Naubron, J.-V.; Grützmacher, H. Angew. Chem., Int. Ed. 2009, 48,
559; (n) Shimizu, K.; Ohshima, K.; Satsuma, A. Chem. Eur. J. 2009, 15, 9977; (o)
Maki, B. E.; Scheidt, K. A. Org. Lett. 2009, 11, 1651; (p) Watson, A. J. A.; Maxwell,
A. C.; Williams, J. M. J. Org. Lett. 2009, 11, 2667; (q) Dam, J. H.; Osztrovszky, G.;
Nordstrøm, L. U.; Madsen, R. Chem. Eur. J. 2010, 16, 6820; (r) Muthaiah, S.;
Ghosh, S. C.; Jee, J.-E.; Chen, C.; Zhang, J.; Hong, S. H. J. Org. Chem. 2010, 75,
3002.
116, 8837; (f) Carreira, E. M.; Lee, W.; Singer, R. A. J. Am. Chem. Soc. 1995, 117,
3
5
649; (g) Evans, D. A.; Murry, J. A.; Kozlowski, M. C. J. Am. Chem. Soc. 1996, 118,
814; (h) Evans, D. A.; MacMillan, D. W. C.; Campos, K. R. J. Am. Chem. Soc. 1997,
119, 10859; (i) Denmark, S. E.; Ghosh, S. K. Angew. Chem., Int. Ed. 2001, 40,
4
759.
3
.
For selected examples of metal catalysts, see: (a) Ito, Y.; Sawamura, M.;
Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405; (b) Yamada, Y. M. A.; Yoshikawa,
N.; Sasai, H.; Shibasaki, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 1871; (c)
Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc.
9. For reviews, see: (a) Sheldon, R. A.; Arends, I. W. C. E. Adv. Synth. Catal. 2004,
346, 1051; (b) de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Synthesis 1996,
1153.
10. (a) Sibi, M. P.; Hasegawa, M. J. Am. Chem. Soc. 2007, 129, 4124; (b) Bui, N.-N.;
Ho, X.-H.; Mho, S.-i.; Jang, H.-Y. Eur. J. Org. Chem. 2009, 5309; (c) Akagawa, K.;
Fujiwara, T.; Sakamoto, S.; Kudo, K. Org. Lett. 2010, 12, 1804.
1
999, 121, 4168; (d) Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003; (e)
Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem. Soc. 2001, 123, 3367.
List, B.; Lerner, R. A.; Barbas, C. F., III. J. Am. Chem. Soc. 2000, 122, 2395.
For selected reviews, see: (a) Saito, S.; Yamamoto, H. Acc. Chem. Res. 2004, 37,
4
5
.
.
5
70; (b) Córdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. Chem.
Eur. J. 2006, 12, 5383; (c) Guillena, G.; Nájera, C.; Ramón, D. J. Tetrahedron:
Asymmetry 2007, 18, 2249; (d) Trost, B. M.; Brindle, C. S. Chem. Soc. Rev. 2010,
11. Akagawa, K.; Sakamoto, S.; Kudo, K. Tetrahedron Lett. 2007, 48, 985.
12. (a) Lim, M. C.; Sinn, E.; Martin, R. B. Inorg. Chem. 1976, 15, 807; (b) Simmons, C.
J.; Lundeen, M.; Seff, K. Inorg. Chem. 1978, 17, 1429; (c) Sugimori, T.;
Shibakawa, K.; Masuda, H.; Odani, A.; Yamauchi, O. Inorg. Chem. 1993, 32,
4951; (d) Carcía-Raso, Á.; Fiol, J. J.; Adrover, B.; Moreno, V.; Mata, I.; Espinosa,
E.; Molins, E. J. Inorg. Biochem. 2003, 95, 77.
39, 1600.
6
.
The aldol-type reactions starting from alcohols have been attained with metal
catalysts, though the products were achiral or racemic: (a) Shimizu, K.; Sato, R.;
Satsuma, A. Angew. Chem., Int. Ed. 2009, 48, 3982; (b) Kim, S.; Bae, S. W.; Lee, J.
S.; Park, J. Tetrahedron 2009, 65, 1461; (c) Denichoux, A.; Fukuyama, T.; Doi, T.;
Horiguchi, J.; Ryu, I. Org. Lett. 2010, 12, 1; (d) Kose, O.; Saito, S. Org. Biomol.
Chem. 2010, 8, 896.
The sequential reaction including the hydroformylation of olefins by a rhodium
catalyst and the subsequent proline-catalyzed aldol reaction was reported:
Chercheja, S.; Eilbracht, P. Adv. Synth. Catal. 2007, 349, 1897.
For reviews on the electrophilic reactions using alcohols as substrates, see: (a)
Taylor, R. J. K.; Reid, M.; Foot, J.; Raw, S. A. Acc. Chem. Res. 2005, 38, 851; (b)
Guillena, G.; Ramón, D. J.; Yus, M. Angew. Chem., Int. Ed. 2007, 46, 2358; For
recent examples of the sequential reactions including alcohol oxidations, see:
13. For a review, see: Trindade, A. F.; Gois, P. M. P.; Afonso, C. A. M. Chem. Rev.
2009, 109, 418.
14. One of the referees suggested to address the heterogeneous nature of the
copper adsorbed catalyst according to the literature (Sheldon, R. A.; Wallau, M.;
Arends, I. W. C. E.; Schuchardt, U. Acc. Chem. Res. 1998, 31, 485). In our system,
the copper complex leaches from the resin to a substantial extent during the
reaction. This is reasonable when considering the absence of specific strongly
interacting functional group such as amino group or carboxylate anion in the
triglycine moiety. On the other hand, according to the previous reports, the
present alcohol oxidation is cooperatively catalyzed by TEMPO and copper ion.
This means that the copper ion leached from the resin does not show catalytic
activity, and only the copper species that are in the close proximity to the
resin-immobilized TEMPO can participate in the catalytic process. This
situation makes it difficult to categorize the present oxidation into either
homogeneous or heterogeneous. When being focused on the copper species,
because they are not rigidly bound to any part of the resin and must diffuse to
TEMPO moiety to show catalytic activity, they are regarded as homogeneous.
In case the main concern is the whole catalytic system including immobilized
TEMPO, this should be described as heterogeneous.
7
.
.
8
(
c) Li, X.-Q.; Wang, W.-K.; Zhang, C. Adv. Synth. Catal. 2009, 351, 2342; (d) Sun,
H.; Su, F.-Z.; Ni, J.; Cao, Y.; He, H.-Y.; Fan, K.-N. Angew. Chem., Int. Ed. 2009, 48,
390; (e) Davi, M.; Lebel, H. Org. Lett. 2009, 11, 41; (f) Blacker, A. J.; Farah, M.
M.; Hall, M. I.; Marsden, S. P.; Saidi, O.; Williams, J. M. J. Org. Lett. 2009, 11,
4
2
2
039; (g) Grigg, R.; Whitney, S.; Sridharan, V.; Keep, A.; Derrick, A. Tetrahedron
009, 65, 4375; (h) Brioche, J.; Masson, G.; Zhu, J. Org. Lett. 2010, 12, 1432; For
examples of direct amide synthesis from alcohols, see: (i) Gunanathan, C.; Ben-
David, Y.; Milstein, D. Science 2007, 317, 790; (j) Reddy, K. R.; Maheswari, C. U.;
Venkateshwar, M.; Kantam, M. L. Eur. J. Org. Chem. 2008, 3619; (k) Nordstrøm,