Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C5CC09832G
ARTICLE
Journal Name
13 P. Jiang, Q. Liu, Y. Liang, J. Tian, A. M. Asiri and X. Sun,
Angew. Chem. Int. Ed., 2014, 53, 12855.
14 R. Liu, S. Gu, H. Du and C. M. Li, J. Mater. Chem. A, 2014, 2,
17263.
catalyst for HER using density functional theory calculations. They
suggested that proton-acceptor (P sites) and hydride-acceptor sites
(Ni sites) work in a cooperative manner.42 The same model can be
used to rationalize the FeP and FeP2 NWs studied here. Both Fe and
P are active sites for the HER, functioning as the hydride-acceptor
and proton-acceptor centers, respectively. It was expected that Fe
ions in FeP, being more metallic than those in FeP2, became more
favorable hydride-acceptor sites. However, more negative charged
P anions in FeP2 created the more active proton-acceptor sites. The
higher concentration of the exposed active P ions can also increase
the catalytic activity. Furthermore the rich P composition protects
more effectively the oxidation of metal ions. This probably explains
why the FeP2 NWs exhibit higher HER catalytic activity than the FeP
NWs with a higher stability.
15 J. Tian, Q. Liu, Y. Liang, Z. Xing, A. M. Asiri and X. Sun, ACS
Appl. Mater. Interfaces, 2014, , 20579.
16 J. Jiang, C. Wang, J. Zhang, W. Wang, X. Zhou, B. Pan, K. Tang,
J. Zuo and Q. Yang, J. Mater. Chem. A, 2015, , 449.
6
3
17 S. Han, Y. Feng, F. Zhang, C. Yang, Z. Yao, W. Zhao, F. Qiu, L.
Yang, Y. Yao, X. Zhuang and X. Feng, Adv. Funct. Mater.,
2015, 25, 3899.
18 Z. Zhang, J. Hao, W. Yang, B. Lu and J. Tang, Nanoscale, 2015,
7, 4400.
19 Z. Pu, C. Tang and Y. Luo, Int. J. Hydrogen Energy, 2015, 40
5092.
,
20 H. Du, S. Gu, R. Liu and C. M. Li, Int. J. Hydrogen Energy,
2015, 40, 14272-14278.
21 X. Yang, A. Y. Lu, Y. Zhu, S. Min, M. N. Hedhili, Y. Han, K. W.
In summary, we synthesized FeP and FeP2 NW arrays on large
substrate areas by reacting pre-grown vertically aligned Fe2O3 NWs
(on Fe foils) and PH3. The FeP and FeP2 NWs exhibit excellent
performance for electrocatalytic HER in both strong acidic and basic
aqueous solutions. The Tafel slopes are 39 and 37 mV dec-1 in 0.5 M
H2SO4 and 75 and 67 mV dec-1 in 1 M KOH, respectively. In addition,
we also synthesized freestanding FeP and FeP2 NWs by
phosphidation of pre-grown Fe NWs and found that the Tafel slopes
are 66 and 40 mV dec-1 in 0.5 M H2SO4, respectively. The FeP2 NWs
exhibit higher electrocatalytic efficiency and better durability than
the FeP NWs. XPS analysis revealed the more negative charged P
anions for FeP2, which can create the more active proton-acceptor
sites. The richer P composition protects effectively the oxidation of
metal ions, which promises a higher stability of catalytic activity.
Therefore, the FeP2 NW catalyst that showed excellent performance
is a promising material for the development of water-splitting cells
able to compete with conventional hydrogen sources.
Huang and L. J. Li, Nanoscale, 2015, 7, 10974.
22 Y. Yam, B. Y. Xia, X. Ge, Z. Liu, A. Fisher and X. Wang, Chem.
Eur. J., 2015, 21, DOI: 10.1002/chem.201503777.
23 E. J. Popczum, C. G. Read, C. W. Roske, N. S. Lewis and R. E.
Schaak, Angew. Chem. Int. Ed., 2014, 53, 5427.
24 Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri and X.
Sun, Angew. Chem. Int. Ed., 2014, 126, 6828.
25 J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014,
136, 7587.
26 Y. Yang, H. Fei, G. Ruan and J. M. Tour, Adv. Mater., 2015, 27
3175.
27 J. F. Callejas, C. G. Read, E. J. Popczun, J. M. McEnaney and R.
E. Schaak, Chem. Mater., 2015, 27, 3769.
28 E. J. Popczum, J. R. McKone, C. G. Read, A. J. Biacchi, A. M.
Wiltrout, N. S. Lewis and R. E. Schaak, J. Am. Chem. Soc.,
2013, 135, 9267.
29 A. R. J. Kucernak and V. N. N. Sundaram, J. Mater. Chem. A,
2014, 2, 17435.
30 A. B. Laursen, K. R. Patraju, M. J. Whitaker, M. Retuerto, T.
Sarkar, N. Yao, K. V. Ramanujachary, M. Greenblatt and G. C.
,
Dismukes, Energy Environ. Sci., 2015,
31 Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu,
Y. Liu, C. Liu, J. Mater. Chem. A, 2015, , 1656.
8, 1027.
Notes and references
3
32 X. Wang, Y. V. Kolen’ko, X. Bao, K. Kovnir and L. Liu, Angew.
Chem. Int. Ed., 2015, 54, 8188-8192.
33 M. Ledendecker, S. K. Calderón, C. Papp, H. Steinrück, M.
1
2
3
4
T. F. Jaramillo, K. P. Jørgensen, J. Bonde and J. H. Nielsen,
Science, 2007, 317, 100.
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am.
Chem. Soc., 2011, 133, 7296.
H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long
and C. J. Chang, Science, 2012, 335, 698.
D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita,
M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla,
Nat. Mater., 2013, 12, 850.
Antonietti and M. Shaldom, Angew. Chem. Int. Ed., 2015, 54
12361.
,
34 J. Tian, Q. Liu, N. Cheng, A. M. Asiri and X. Sun, Angew.
Chem. Int. Ed., 2014, 53, 9577.
35 Z. Xing, Q. Liu, A. M. Asiri and X. Sun, Adv. Mater., 2014, 26
5702.
,
36 X. Chen, D. Wang, Z. Wang, P. Zhou, Z. Wu, F. Jiang, Chem.
Commun., 2014, 50, 11683.
37 J. Kibsgaard and T. F. Jaramillo, Angew. Chem. Int. Ed., 2014,
53, 14433.
38 T. Wang, K. Du, W. Liu, Z. Zhu, Y. Shao and M. Li, J. Mater.
Chem. A, 2015, 3, 4368.
39 P. Xiao, W. Chen, X. Wang, Adv. Energy Mater., 2015,
doi:10.1002/aenm.201500985.
40 C. H. Kim, H. J. Chun, D. S. Kim, S. Y. Kim, J. Park, J. Y. Moon,
G. Lee, J. Yoon, Y. Jo, M. H. Jung, S. I. Jung and C. J. Lee, Appl.
Phys. Lett., 2006, 89, 223103.
5
6
7
X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan and H.
Zhang, Nat. Commun., 2013,
Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M.
Jaroniec and S. Z. Qiao, Nat. Commun., 2014, , 3783.
4, 1444.
5
C. G. Morales-Guio, L. Stern and X. Hu, Chem. Soc. Rev.,
2014, 43, 6555.
X. Zou and Y. Zhang, Chem. Soc. Rev., 2015, 44, 5148.
Y. Xu, R. Wu, J. Zhang, Y. Shi and B. Zhang, Chem. Commun.,
2013, 49, 6656.
8
9
10 Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. Luo, ACS Catal.,
2014, , 4065.
11 J. F. Callejas, J. M. McEnaney, C. G. Read, J. C. Crompton, A. J.
Biacchi, E. J. Popczun, T. R. Gordon, N. S. Lewis and R. E.
Schaak, ACS Nano, 2014, 8, 11101.
41 A. P. Grosvenor, B. A. Kobe, M. C. Biesinger and N. S.
McIntyre, Surf. Interface Anal., 2004, 36, 1564.
4
42 P. Liu and J. A. Rodriquez, J. Am. Chem. Soc., 2005, 127
14871.
,
12 Z. Zhang, B. Lu, J. Hao, W. Yang and J. Tang, Chem. Commun.,
2014, 50, 11554.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins