This work is supported by a Cottrell College Science Award
ID #7892) from Research Corporation and a Presidential
(
Scholar Award from SUNY Potsdam (FBA) and by a
startup grant from Clarkson University (A. M.). The
heteropolymer ferritin sample was a generous donation from
Professor Sonia Levi at the School of Medicine, Vita-Salute
San Raffaele University, Milano, Italy.
Notes and references
Fig. 4 Proposed mechanism of iron release from ferritin by ligands of
type 1 and 3.
1 J. F. Turrens, J. Physiol. (London), 2003, 552, 335–344.
2 M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic and M. Mazur,
Chem.-Biol. Interact., 2006, 160, 1–40.
channels where they encounter BHT or DFO ligands to form
Fe(II)–BHT or Fe(II)–DFO chelate complexes. These latter are
rapidly oxidized by molecular oxygen to produce the more
thermodynamically stable Fe(III)–chelates and regenerate
superoxide anions thus completing the catalytic cycle (Fig. 4).
3 J. A. Imlay, Annu. Rev. Microbiol., 2003, 57, 395–418.
4
5
P. M. Harrison and P. Arosio, Biochim. Biophys. Acta, Bioenerg.,
996, 1275, 161–203.
F. Bou-Abdallah, G. Zhao, G. Biasiotto, M. Poli, P. Arosio and
1
N. D. Chasteen, J. Am. Chem. Soc., 2008, 130, 17801–17811.
6 E. C. Theil, H. Takagi, G. W. Small, L. He, A. R. Tipton and
D. Danger, Inorg. Chim. Acta, 2000, 297, 242–251.
2
+
3+
This process is facilitated by the very low Fe /Fe reduction
1
7
8
X. F. Liu and E. C. Theil, Acc. Chem. Res., 2005, 38, 167–175.
S. Sirivech, E. Frieden and S. Osaki, Biochem. J., 1974, 143,
311–315.
7
potentials of these chelate complexes (À0.80 V)
in
comparison with the superoxide anion reduction potential
2
2
9
J. Dognin and R. R. Crichton, FEBS Lett., 1975, 54, 234–236.
(
À0.33 V) and has been previously observed with specific
1
0 F. Funk, J. P. Lenders, R. R. Crichton and W. Schneider, Eur. J.
Biochem., 1985, 152, 167–172.
11 S. K. Weeratunga, C. E. Gee, S. Lovell, Y. H. Zeng, C. L. Woodin
iron(II) chelators and sacrificial hydrogen donor such as
2
biphenols.
1
This catalytic cycle can be initiated by the reaction of BHT or
DFO ligands with iron(II) cations that are present in ferritin
and M. Rivera, Biochemistry, 2009, 48, 7420–7431.
1
2 R. C. Hider and A. D. Hall, in Perspectives on Bioinorganic
Chemistry, ed. R. W. Hay, J. R. Dilworth and K. B. Nolan, 1991,
pp. 209–254.
2
3a,b
23c
or as magnetite and is accom-
either as ferrous cations
panied by other side reactions that replenish superoxide
radicals lost due to disproportionation. Inhibition of iron
release by catalase, mannitol, and urea that scavenge hydrogen
peroxide and hydroxyl radicals indicates that these reactive
oxygen species can also participate in catalytic cycle, most
probably through a sacrificial hydrogen donation from the
anionic form of the BHT ligand.
13 P. Sanchez, N. Galvez, E. Colacio, E. Minones and
J. M. Dominguez-Vera, Dalton Trans., 2005, 811–813.
1
1
1
1
1
1
4 N. Galvez, B. Ruiz, R. Cuesta, E. Colacio and J. M. Dominguez-
Vera, Inorg. Chem., 2005, 44, 2706–2709.
5 R. R. Crichton, F. Roman and F. Roland, FEBS Lett., 1980, 110,
271–274.
6 J. Gun, I. Ekeltchik, O. Lev, R. Shelkov and A. Melman, Chem.
Commun., 2005, 5319–5321.
7 I. Ekeltchik, J. Gun, O. Lev, R. Shelkov and A. Melman, Dalton
Trans., 2006, 1285–1293.
8 D. Sun, G. Melman, N. J. LeTourneau, A. M. Hays and
A. Melman, Bioorg. Med. Chem. Lett., 2010, 20, 458–460.
9 R. K. Watt, R. J. Hilton and D. M. Graff, Biochim. Biophys. Acta,
Gen. Subj., 2010, 1800, 745–759.
Under normal conditions, it is unlikely that the superoxide-
mediated iron release process from ferritin is physiologically
relevant. However, it has been shown that inflammation
stimulates polymorphonuclear leukocytes and macrophages
ꢀ
À
to produce large amounts of superoxide anion (O
hydrogen peroxide (H which then result in the
2
) and
20 (a) X. Yang and N. D. Chasteen, Biophys. J., 1996, 71, 1587–1595;
b) X. Yang, P. Arosio and N. D. Chasteen, Biophys. J., 2000, 78,
2049–2059; (c) N. D. Chasteen and P. M. Harrison, J. Struct. Biol.,
999, 126, 182–194; (d) X. S. Liu, L. D. Patterson, M. J. Miller and
(
2
2
O )
2
4
mobilization of iron from human and horse ferritin. While
the exact physiological mechanism of this process remains
unknown, the continuous production of superoxide anions
during inflammation might lead to the release of enough iron
which could then catalyze the formation of the more damaging
hydroxyl radicals, the underlying cause for a variety of
1
E. C. Theil, J. Biol. Chem., 2007, 282, 31821–31825; (e) W. Jin,
H. Takagi, B. Pancorbo and E. C. Theil, Biochemistry, 2001, 40,
7
525–7532.
1 (a) S. Ahmad, V. Singh and G. S. Rao, Chem.-Biol. Interact., 1995,
6, 103–111; (b) L. R. Harris, M. H. Cake and D. J. Macey,
2
9
Biochem. J., 1994, 301, 385–389; (c) B. J. Bolann and R. J. Ulvik,
Eur. J. Biochem., 1990, 193, 899–904.
2 P. M. Wood, Biochem. J., 1988, 253, 287–289.
3 (a) J. S. Rohrer, R. B. Frankel, G. C. Papaefthymiou and
E. C. Theil, Inorg. Chem., 1989, 28, 3393–3395; (b) S. Hilty,
B. Webb, R. B. Frankel and G. D. Watt, J. Inorg. Biochem.,
2
5
diseases.
In conclusion, chelate ligands of 2,4-bis[hydroxy(methyl)amino]-
,3,5-triazine family are capable of rapidly mobilizing iron
2
2
1
from ferritin. Our data suggest that iron release from ferritin
is catalyzed by oxygen and involves reduction of the iron core
by superoxide anion. The reduced iron diffuses out of
the ferritin shell and forms Fe(III)-complexes with BHT with
the concomitant production of superoxide anions. A similar
iron release process is suggested to occur with the commonly
used iron-chelate desferroxamine (DFO) but not with
deferasirox (DFX).
1
994, 56, 173–185; (c) N. Ga
R. Cuesta, M. Ceolın, M. Clemente-Leo
M. Lopez-Haro, J. J. Calvino, O. Stephan and J. M. Domı
Vera, J. Am. Chem. Soc., 2008, 130, 8062–8068.
24 (a) B. M. Babior, R. S. Kipnes and J. T. Curnutte, J. Clin. Invest.,
973, 52, 741–744; (b) P. Biemond, H. G. van Eijk, A. J. G. Swaak
´
lvez, B. n. Ferna
´
ndez, P. n. Sa
´
´
nchez,
´
n, S. Trasobares,
´
´
´
nguez-
1
and J. Koster, J. Clin. Invest., 1984, 73, 1576–1579; (c) C. E. Thomas
and S. D. Aust, J. Biol. Chem., 1986, 261, 13064–13070.
25 D. B. Kell, BMC Med. Genomics, 2009, 2, 79.
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 731–733 733