Journal of the American Chemical Society
Communication
ACKNOWLEDGMENTS
■
We thank the National Science Foundation (NSF-1300267) and
Keck Foundation for financial support. We also thank Nature-
Works and Boulder Scientific Co. for the research gifts of meso-
LA and B(C6F5)3, respectively.
REFERENCES
■
(1) (a) Auras, R. Poly(lactic acid). In Encyclopedia of Polymer Science
and Technology, 4th ed.; Mark, H. F., Ed.; Wiley: Hoboken, NJ, 2014;
Vol. 10, pp 165−175. (b) Stanford, M. J.; Dove, A. P. Chem. Soc. Rev.
2010, 39, 486. (c) Thomas, C. M. Chem. Soc. Rev. 2010, 39, 165.
(d) Platel, R. H.; Hodgson, L. M.; Williams, C. K. Polymer Rev. 2008, 48,
11. (e) Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Chem. Rev.
2004, 104, 6147.
(2) Reviews: (a) Sauer, A.; Kapelski, A.; Fliedel, C.; Dagorne, S.; Kol,
M.; Okuda, J. Dalton Trans. 2013, 42, 9007. (b) O’Keefe, B. J.; Hillmyer,
M. A.; Tolman, W. B. Dalton Trans. 2001, 2215.
(3) (a) Naumann, S.; Dove, A. P. Polym. Chem. 2015, 6, 3185.
(b) Thomas, C.; Bibal, B. Green Chem. 2014, 16, 1687. (c) Fevre, M.;
̀
Pinaud, J.; Gnanou, Y.; Vignolle, J.; Taton, D. Chem. Soc. Rev. 2013, 42,
2142. (d) Kiesewetter, M. K.; Shin, E. J.; Hedrick, J. L.; Waymouth, R.
M. Macromolecules 2010, 43, 2093. (e) Kamber, N. E.; Jeong, W.;
Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L. Chem.
Rev. 2007, 107, 5813.
Figure 3. Homonuclear decoupled 1H NMR spectra (400 MHz,
CDCl3) of the methane region of PLAs from rac-LA: (a) catalyst 4, 25
°C, 82.9% conversion; (b) catalyst 4, 25 °C, 50.5% conversion; (c) tBu-
P2, −75 °C, >99% conversion.
(4) (a) Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick,
J. L.; Wade, C. G. J. Am. Chem. Soc. 2007, 129, 12610. (b) Dove, A. P.; Li,
H.; Pratt, R. C.; Lohmeijer, B. G. G.; Culkin, D. A.; Waymouth, R. M.;
Hedrick, J. L. Chem. Commun. 2006, 2881.
(5) Miyake, G. M.; Chen, E. Y.-X. Macromolecules 2011, 44, 4116.
(6) Makiguchi, K.; Yamanaka, T.; Kakuchi, T.; Terada, M.; Satoh, T.
Chem. Commun. 2014, 50, 2883.
99%). Finally, we first performed the quantitative epimerization
of meso-LA (0.721 g) by DABCO/B(C6F5)3 (0.01 mol %) in
toluene, removed the solvent to give rac-LA/meso-LA in a ratio of
99/1, and then added catalyst 4 in DFB for subsequent kinetic
resolution polymerization. The results were similar (only with a
slightly lower s value, run 11 vs 10) to those obtained using the
pure rac-LA under the same reaction conditions.
(7) (a) Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater.
2000, 12, 1841. (b) Lunt, J. Polym. Degrad. Stab. 1998, 59, 145.
In conclusion, we have discovered that the Lewis pair
DABCO/B(C6F5)3 catalyzes rapid and quantitative epimeriza-
tion of meso-LA, often regarded as a “waste” side-product of the L-
LA production process, into rac-LA. The keys for achieving
quantitative conversion of this isomerization process include (a)
a highly effective LP catalyst system that enables the rapid
epimerization at ambient temperature, under which conditions
the equilibrium is shifted further toward rac-LA and LA
oligomerization can also be avoided and (b) continuous removal
of the formed rac-LA from the reaction mixture through
precipitation of rac-LA from solution due to solubility differ-
ences. This epimerization method can convert LA stereoisomers
in any ratio into essentially pure rac-LA. We also developed a
highly enantioselective bifunctional chiral organic catalyst. Using
this catalyst, rac-LA is polymerized enantioselectively into it-
PLLA and optically resolved D-LA with a high stereoselectivity
factor of 53 and the ee value of 91% at 50.6% monomer
conversion. The epimerization and kinetic resolution polymer-
ization can be coupled into a one-pot process, effectively
transforming meso-LA directly into it-PLLA and D-LA.
(8) Shuklov, I. A.; Jiao, H.; Schulze, J.; Tietz, W.; Kuhlein, K.; Borner,
A. Tetrahedron Lett. 2011, 52, 1027.
̈
̈
(9) (a) Kopinke, F.-D.; Remmler, M.; Mackenzie, K.; Moder, M.;
Wachsen, O. Polym. Degrad. Stab. 1996, 53, 329. (b) McNeill, I. C.;
Leiper, H. A. Polym. Degrad. Stab. 1985, 11, 309.
(10) Tsukegi, T.; Motoyama, T.; Shirai, Y.; Nishida, H.; Endo, T.
Polym. Degrad. Stab. 2007, 92, 552.
(11) Inkinen, S.; Hakkarainen, M.; Albertsson, A.-C.; Sodergard, A.
Biomacromolecules 2011, 12, 523.
(12) A review: Buffet, J.-C.; Okuda, J. Polym. Chem. 2011, 2, 2758.
(13) (a) Maudoux, N.; Roisnel, T.; Carpentier, J.-F.; Sarazin, Y.
Organometallics 2014, 33, 5740. (b) Kapelski, A.; Okuda, J. J. Polym. Sci.,
Part A: Polym. Chem. 2013, 51, 4983. (c) Buffet, J.-C.; Okuda, J. Chem.
Commun. 2011, 47, 4796. (d) Buffet, J.-C.; Kapelski, A.; Okuda, J.
Macromolecules 2010, 43, 10201. (e) Amgoune, A.; Thomas, C. M.;
Roisnel, T.; Carpentier, J.-F. Chem. - Eur. J. 2006, 12, 169. (f) Ovitt, T.
M.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 4072.
(14) (a) Pilone, A.; De Maio, N.; Press, K.; Venditto, V.; Pappalardo,
D.; Mazzeo, M.; Pellecchia, C.; Kol, M.; Lamberti, M. Dalton Trans.
2015, 44, 2157. (b) Sauer, A.; Buffet, J.-C.; Spaniol, T. P.; Nagae, H.;
Mashima, K.; Okuda, J. Inorg. Chem. 2012, 51, 5764.
(15) Benson, R. D.; Schroeder, J. D. U.S. Patent 9,035,076 B2, May 19,
2015.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
(16) (a) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2015, 54,
6400. (b) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46.
(17) (a) Chen, J.; Chen, E. Y.-X. Angew. Chem., Int. Ed. 2015, 54, 6842.
(b) Xu, T.; Chen, E. Y.-X. J. Polym. Sci., Part A: Polym. Chem. 2015, 53,
1895.
(18) Eisenberger, P.; Bailey, A. M.; Crudden, C. M. J. Am. Chem. Soc.
2012, 134, 17384.
(19) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048.
(20) Fukata, Y.; Asano, K.; Matsubara, S. J. Am. Chem. Soc. 2013, 135,
12160.
S
Experimental details and characterization data (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX