L-sugars as well as manno- and allo-isomers). Because of
the difficulties Barrett encountered in introducing the acyl
1
3
side chain on the C-3 hydroxyl group, we decided to
synthesize a mannopyranoside isomer of papulacandin D,
which may allow for simple acylation of C-3 and then
inversion at C-2.
In the context of a research program aimed at the synthesis
and study of the mechanism of action of the papulacandins,
we targeted three [4.5]spirocyclic ketal containing papula-
candin stereoisomers 1, 2, and 3 for synthesis and study as
glycosidase inhibitors (Figure 2). A key aspect to our study
Figure 1.
the fascinating molecular structure have stimulated a sig-
nificant amount of both biological5,7,9,11 and synthetic inves-
12
tigations by a number of research groups. So far, only one
member of the papulacandins has succumbed to total
1
3
synthesis, that being papulacandin D by the Barrett group.
Hitchcock and his group at Eli Lilly have completed a
semisynthesis of papulacandin D by attaching the more
readily available papulacandin A side chain to the papula-
candin D ring system.14 These two routes both correlated
and assigned the C-3 acyl side chain absolute stereochemistry
of papulacandins A and D.
Figure 2.
is to test the hypothesis that an iminosugar will nicely mimic
the spiroketal ring system of the papulacandins. Crucial
With the exception of the work from the Danishefsky
17
group1 and our own, all other routes to the papulacandins
derive their asymmetry from D-glucose. Danishefsky used a
Diels-Alder strategy to construct the spiroketal portion of
the papulacandins, in which the asymmetry was derived from
2a
15
for testing this hypothesis is the development of a synthetic
sequence to diastereomers of the papulacandin ring system
that will allow for testing against their corresponding
glycosidase enzymes and comparison with their analogous
iminosugar analogues. Herein we would like to report our
achievement of the enantioselective synthesis of three
papulacandin spiroketal diastereoisomers, glucose 1, mannose
1
2a
a combination of chiral auxiliary and chiral Lewis acid.
Our group has developed an approach to the mannose
stereoisomers of the papulacandin ring system via an
asymmetric dihydroxylation of 5-aryl-2-vinylfurans (vide
infra).1 In addition to potentially improved routes to the
papulacandins, a synthetic route from achiral starting materi-
als will allow for the preparation of analogues (i.e., D- and
2
, and allose 3.
5,16
Previously, we have reported the Sharpless asymmetric
dihydroxylation reaction on vinylfurans and have applied this
methodology to synthesize various D- or L-hexoses.
18,19
More
recently, we have described an asymmetric dihydroxylation
of 5-substituted vinylfuran for the synthesis of enantio-
(
11) (a) Kaneto, R.; Chiba, H.; Agematu, H.; Shibamoto, N.; Yoshioka,
T.; Nishida, H.; Okamoto, R. J. Antibiot. 1993, 46, 247. (b) Okada, H.;
Nagashima, M.; Suzuki, H.; Nakajima, S.; Kojiri, K.; Suda, H. J. Antibiot.
1
5
enriched furyl alcohols such as 4, which were converted
1
996, 49, 103.
12) For other approaches to the papulacandin ring system, see: (a)
Danishefsky, S.; Philips, G.; Ciufolini, M. Carbohydr. Res. 1987, 171, 317.
b) Schmidt, R. R.; Frick, W. Tetrahedron 1988, 44, 7163. (c) Friesen, R.
20
21
via an Achmatowicz oxidation/Luche reduction sequence
(
(
(17) It has been proposed that the spiroketal ring system inhibits the
enzyme â(1-3)glucan synthases as a transition state inhibitor analogously
with iminosugars; in fact, Urbina has found some simple arylamines inhibit
fungal cell wall synthesis. See: Urbina, J. M.; Cortes, J. C. G.; Palma, A.
Bioorg. Med. Chem. 2000, 8(4), 691.
(18) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. ReV.
1994, 94, 2483.
W. Sturino, C. F. J. Org. Chem. 1990, 55, 5808. (d) Friesen, R. W.; Loo,
R. W.; Sturino, C. F. Can. J. Chem. 1994, 72, 1262. (e) Friesen, R. W.;
Daljeet, A. K. Tetrahedron Lett. 1990, 31, 6133. (f) Dubois, E.; Beau, J.-
M. Tetrahedron Lett. 1990, 31, 5165. (g) Dubois, E.; Beau, J.-M. Carbohydr.
Res. 1992, 223, 157. (h) Rosenblum, S.; Bihovsky, M. J. Am. Chem. Soc.
1
990, 112, 2746. (i) Czernecki, S.; Perlat, M. C. J. Org. Chem. 1991, 56,
6
289. (j) Barrett, A. G. M.; Dhanak, D.; Lebold, S. A.; Pena, M.; Pilipauskas,
(19) (a) Harris, J. M.; Keranen, M. D.; O’Doherty, G. A. J. Org. Chem.
1999, 64, 2982. (b) Harris, J. M.; Keranen, M. D.; Nguyen, H.; Young, V.
G.; O’Doherty, G. A. Carbohydr. Res. 2000, 328(1), 17.
(20) (a) Achmatowicz, O.; Bielski, R. Carbohydr. Res. 1977, 55, 165.
(b) Grapsas, I.; K.; Couladouros, E. A.; Georgiadis, M. P. Pol. J. Chem.
1990, 64, 823.
D. Pest. Sci, 1991, 31, 581. (k) McDonald, F. E.; Zhu, H. Y. H.; Holmquist,
C. R. J. Am. Chem. Soc. 1995, 117, 6605. (l) Parker, K. A.; Georges, A. T.
Org. Lett. 2000, 2(4), 497-499.
(13) For a synthesis of a papulacandin D and for relevant references,
see: Barrett, A. G. M.; Pena, M.; Willardsen, J. A. J. Org. Chem. 1996,
1, 1082.
14) Hitchcock, S. A.; Gregory, G. S.; Kraynack, E. A.; Mayhugh, D.
6
(21) Luche, J.-L. J. Am. Chem. Soc. 1978, 110, 2226.
(
(22) For other Achmatowicz oxidation approaches to spiroketals, see:
(a) DeShong, P.; Waltermire, R. E.; Ammon, H.; L. J. Am. Chem. Soc.
1988, 110, 1901. (b) Perron, F. Albizati, K.; F. J. Org. Chem. 1989, 54,
2047. For a review on the synthesis of spiroketals, see: (c) Perron, F.;
Albizati, K.; F. Chem. ReV. 1989, 89, 1617. (d) Brimble, M. A.; Fares, F.
A. Tetrahedron 1999, 55, 7661.
R. Presented at the 218th National Meeting of the American Chemical
Society, New Orleans, Aug 22-26, 1999.
(
15) Balachari, D.; O’Doherty, G. A. Org. Lett. 2000, 2, 863.
(16) Balachari, D.; Quim, L.; O’Doherty, G. A. Tetrahedron Lett. 1999,
4
0, 4769.
4034
Org. Lett., Vol. 2, No. 25, 2000