Communication
ChemComm
5
6
7
8
9
J. Li, J. Xu, Z. Xie, X. Gao, J. Zhou, Y. Xiong, C. Chen, J. Zhang and
Z. Liu, Adv. Mater., 2018, 30, 1800548.
Y. Guo, J. Liu, Q. Yang, L. Ma, Y. Zhao, Z. Huang, X. Li, B. Dong,
X. Z. Fu and C. Zhi, Small, 2020, 16, 1907341.
H. Yu, Y. Xue, L. Hui, F. He, C. Zhang, Y. Liu, Y. Fang, C. Xing, Y. Li,
H. Liu and Y. Li, Nano Energy, 2019, 64, 103928.
L. Hui, Y. Xue, B. Huang, H. Yu, C. Zhang, D. Zhang, D. Jia, Y. Zhao,
Y. Li, H. Liu and Y. Li, Nat. Commun., 2018, 9, 5309.
M. Zhang, X. Wang, H. Sun, N. Wang, J. He, N. Wang, Y. Long,
C. Huang and Y. Li, ACS Cent. Sci., 2020, 6, 950–958.
1
0 Z. Yang, R. Liu, N. Wang, J. He, K. Wang, X. Li, X. Shen, X. Wang,
Q. Lv, M. Zhang, J. Luo, T. Jiu, Z. Hou and C. Huang, Carbon, 2018,
1
37, 442–450.
1
1
1
1
1
1
1
1 J. He, N. Wang, Z. Cui, H. Du, L. Fu, C. Huang, Z. Yang, X. Shen,
Y. Yi, Z. Tu and Y. Li, Nat. Commun., 2017, 8, 1172.
2 S. Zhuo, Y. Shi, L. Liu, R. Li, L. Shi, D. H. Anjum, Y. Han and
P. Wang, Nat. Commun., 2018, 9, 3132.
3 S. Debnath, C. Phan, D. J. Searles and M. Hankel, ACS Appl. Energy
Mater., 2020, 3, 7404–7415.
4 Y. Song, X. Li, Z. Yang, J. Wang, C. Liu, C. Xie, H. Wang and
C. Huang, Chem. Commun., 2019, 55, 6571–6574.
5 R. H. Baughman, H. Eckhardt and M. Kertesz, J. Chem. Phys., 1987,
Fig. 4 HER/OER catalytic performance of HsGDY. (a) The polarization
curve for the HER. (b) The corresponding Tafel plot. (c) The polarization
curve for the OER. (d) The corresponding Tafel plot.
8
7, 6687–6699.
6 G. Li, Y. Li, H. Liu, Y. Guo, Y. Li and D. Zhu, Chem. Commun., 2010,
6, 3256–3258.
7 X. Gao, H. Liu, D. Wang and J. Zhang, Chem. Soc. Rev., 2019, 48,
08–936.
4
9
The HsGDY film is a free-standing, carbon-rich material with a 18 X. Kan, Y. Ban, C. Wu, Q. Pan, H. Liu, J. Song, Z. Zuo, Z. Li and
Y. Zhao, ACS Appl. Mater. Interfaces, 2018, 10, 53–58.
meso/macroporous second-order structure. Qualitative and
1
9 R. Matsuoka, R. Sakamoto, K. Hoshiko, S. Sasaki, H. Masunaga,
K. Nagashio and H. Nishihara, J. Am. Chem. Soc., 2017, 139,
3145–3152.
0 J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu,
Y. Li, J. Zhang and Z. Liu, J. Am. Chem. Soc., 2015, 137, 7596–7599.
1 J. Li, Z. Xie, Y. Xiong, Z. Li, Q. Huang, S. Zhang, J. Zhou, R. Liu,
X. Gao, C. Chen, L. Tong, J. Zhang and Z. Liu, Adv. Mater., 2017,
quantitative measurements demonstrate the existence of abun-
2
dant aromatic rings and alkyne bonds. The ratio of sp to sp
2
carbon atoms is close to 1 : 1, consistent with the theoretical
structure of HsGDYs. Compared with previous methods, our
reaction can proceed at r.t. without extra heating and the
reaction time is also shortened from over 24 h to 12 h. This
delightful improvement is mainly attributed to the terminal
2
29, 1700421.
2
2 X. Gao, J. Li, R. Du, J. Zhou, M. Y. Huang, R. Liu, J. Li, Z. Xie,
L. Z. Wu, Z. Liu and J. Zhang, Adv. Mater., 2017, 29, 1605308.
alkynyl bromide functional groups which have higher stability 23 X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang, C. Yin, F. Ding, S. Zhang,
X. Yi, J. Wang, L. Tong, Y. Han, Z. Liu and J. Zhang, Sci. Adv., 2018,
than alkynyl and higher reactivity than alkynylsilane. The HER
4, eaat6378.
and OER catalytic performances were also measured. HsGDY
shows a similar electrochemical activity to that in previous
studies. This work not only proposes a novel synthesis strategy
for HsGDYs, but also provides a potential solution for the large-
scale industrial preparation of GDYs.
This study was supported by the National Natural Science
Foundation of China (No. 21905206) and the Shanghai Sail
Program (No. 19YF1450800).
2
2
2
2
2
2
3
3
3
3
4 J. Zhou, Z. Xie, R. Liu, X. Gao, J. Li, Y. Xiong, L. Tong, J. Zhang and
Z. Liu, ACS Appl. Mater. Interfaces, 2019, 11, 2632–2637.
5 K. Ikegashira, Y. Nishihara, K. Hirabayashi, A. Mori and T. Hiyama,
Chem. Commun., 1997, 1039–1040.
6 Z. Zuo, H. Shang, Y. Chen, J. Li, H. Liu, Y. Li and Y. Li,
Chem. Commun., 2017, 53, 8074–8077.
7 R. Liu, X. Gao, J. Zhou, H. Xu, Z. Li, S. Zhang, Z. Xie, J. Zhang and
Z. Liu, Adv. Mater., 2017, 29, 1604665.
8 Q. Sun, L. Cai, H. Ma, C. Yuan and W. Xu, ACS Nano, 2016, 10,
7023–7030.
9 L. Hui, Y. Xue, H. Yu, C. Zhang, B. Huang and Y. Li, ChemPhysChem,
2020, 21, 2145–2149.
0 J. Wang, S. Zhang, J. Zhou, R. Liu, R. Du, H. Xu, Z. Liu, J. Zhang and
Z. Liu, Phys. Chem. Chem. Phys., 2014, 16, 11303–11309.
1 H. Bao, L. Wang, C. Li and J. Luo, ACS Appl. Mater. Interfaces, 2019,
Conflicts of interest
There are no conflicts to declare.
11, 2717–2729.
2 C. Huang, S. Zhang, H. Liu, Y. Li, G. Cui and Y. Li, Nano Energy,
2015, 11, 481–489.
3 S. Wu, G. Wen, R. Schlogl and D. S. Su, Phys. Chem. Chem. Phys.,
2015, 17, 1567–1571.
Notes and references
1
G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang,
W.-N. Mei, J. Lu, Y. Li and S. Nagase, Phys. Rev. B: Condens. Matter 34 Q. Yang, Y. Guo, J. Gu, N. Li, C. Wang, Z. Liu, X. Li, Z. Huang, S. Wei,
Mater. Phys., 2011, 84, 075439.
J. Li, S. Li, Q. Liu, C. Yin, L. Tong, C. Chen and J. Zhang,
Small, 2019, 15, 1805344.
S. Xu, L. Song, J. Fan, Z. Chen, J. Qiu and C. Zhi, Nano Energy, 2020,
78, 105283.
35 Y. Xue, J. Li, Z. Xue, Y. Li, H. Liu, D. Li, W. Yang and Y. Li, ACS Appl.
Mater. Interfaces, 2016, 8, 31083–31091.
2
3
4
N. Wang, J. He, Z. Tu, Z. Yang, F. Zhao, X. Li, C. Huang, K. Wang,
T. Jiu, Y. Yi and Y. Li, Angew. Chem., Int. Ed., 2017, 56, 10740–10745. 36 C. Hu, H. Liu, Y. Liu, J.-F. Chen, Y. Li and L. Dai, Nano Energy, 2019,
Z. Yang, X. Shen, N. Wang, J. He, X. Li, X. Wang, Z. Hou, K. Wang, 63, 103874.
J. Gao, T. Jiu and C. Huang, ACS Appl. Mater. Interfaces, 2019, 11, 37 H. Yan, S. Guo, F. Wu, P. Yu, H. Liu, Y. Li and L. Mao, Angew. Chem.,
608–2617. Int. Ed., 2018, 57, 3922–3926.
2
Chem. Commun.
This journal is © The Royal Society of Chemistry 2021