Page 5 of 7
Analytical Chemistry
HOCl and subsequent hydrolysis, it is converted to the emisꢀ
sive imidazolium salt 3, giving rise to a turnꢀon response at
450 nm. The probe localizes in the ER, is highly selective for
HOCl over other ROS, functions in a broad range of pH, and
is less susceptible to aggregation effects than previously reꢀ
ported NHCꢀborane probes for HOCl, which relied on the
modulation of pyrene excimer emission. These meritorious
properties portend to the potential value of 4 in the study of
ER signaling and function under oxidative stress.
8. Andina, D.; Leroux, J. C.; Luciani, P. Ratiometric Fluorescent
1
2
3
4
5
6
7
8
9
Probes for the Detection of Reactive Oxygen Species. Chem. Eur.
J. 2017, 23, 13549ꢀ13573
9
.
Lou, Z.; Li, P.; Han, K. RedoxꢀResponsive Fluorescent Probes
with Different Design Strategies. Acc. Chem. Res. 2015, 48,
1
358ꢀ1368
10. Hu, J. J.; Wong, N. K.; Gu, Q.; Bai, X.; Ye, S.; Yang, D. HKOClꢀ
Series of Green BODIPYꢀBased Fluorescent Probes for Hypoꢀ
2
chlorous Acid Detection and Imaging in Live Cells. Org. Lett.
2014, 16, 3544ꢀ3547
1
1. Yuan, L.; Wang, L.; Agrawalla, B. K.; Park, S. J.; Zhu, H.; Sivaꢀ
raman, B.; Peng, J.; Xu, Q. H.; Chang, Y. T. Development of
Targetable TwoꢀPhoton Fluorescent Probes to Image Hypoꢀ
chlorous Acid in Mitochondria and Lysosome in Live Cell and
Inflamed Mouse Model. J. Am. Chem. Soc. 2015, 137, 5930ꢀ
ASSOCIATED CONTENT
Supporting Information
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
The Supporting Information is available free of charge on the
ACS Publications website. Synthetic schemes and procedures,
5
938.
1
13
12. Chen, X.; Lee, K.ꢀA.; Ren, X.; Ryu, J.ꢀC.; Kim, G.; Ryu, J.ꢀH.;
Lee, W.ꢀJ.; Yoon, J. Synthesis of highly HOClꢀselective fluoresꢀ
cent probe and its use for imaging HOCl in cells and organisms.
Nat. Protocols. 2016, 11, 1219ꢀ1228.
experimental details, H NMR, C NMR, ESIꢀMS, UV−Vis, and
fluorescence spectra (Figures S1ꢀS18; Tables S1ꢀS2) (PDF).
AUTHOR INFORMATION
Corresponding Author
1
3. Chen, S.; Lu, J.; Sun, C.; Ma, H. A highly specific ferroceneꢀ
based fluorescent probe for hypochlorous acid and its application
to cell imaging. Analyst. 2010, 135, 577ꢀ582.
*
*
*
Eꢀmail: jyoon@ewha.ac.kr. Phone: +82 (02) 3277ꢀ2400
1
4. Kenmoku, S.; Urano, Y.; Kojima, H.; Nagano, T. Development of
a Highly Specific RhodamineꢀBased Fluorescence Probe for Hyꢀ
pochlorous Acid and Its Application to RealꢀTime Imaging of
Phagocytosis. J. Am. Chem. Soc. 2007, 129, 7313ꢀ7318.
ORCID
15. Chen, G.; Song, F.; Wang, J.; Yang, Z.; Sun, S.; Fan, J.; Qiang,
X.; Wang, X.; Dou, B.; Peng, X. FRET spectral unmixing: a ratiꢀ
ometric fluorescent nanoprobe for hypochlorite. Chem. Commun.
2012, 48, 2949ꢀ2951.
Hwan Myung Kim: 0000ꢀ0002ꢀ4112ꢀ9009
Jean Bouffard: 0000ꢀ0003ꢀ2281ꢀ2088
Juyoung Yoon: 0000ꢀ0002ꢀ1728ꢀ3970
1
6. Wang, B.; Chen, D.; Kambam, S.; Wang, F.; Wang, Y.; Zhang,
W.; Yin, J.; Chen, H.; Chen, X. A highly specific fluorescent
probe for hypochlorite based on fluorescein derivative and its enꢀ
dogenous imaging in living cells. Dyes Pigments. 2015, 120, 22ꢀ
Author Contributions
‡
These authors contributed equally
Notes
2
9.
The authors declare no competing financial interest.
1
7. Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. An ICTꢀ
Based Approach to Ratiometric Fluorescence Imaging of Hydroꢀ
gen Peroxide Produced in Living Cells. J. Am. Chem. Soc. 2008,
130, 4596ꢀ4597.
ACKNOWLEDGMENT
We thank the National Research Foundation of Korea for the
financial
support
(2012R1A3A2048814
to H. M.
to
J.
Y.;
and
18. Lou, Z.; Li, P.; Panab, Q.; Han, K. A reversible fluorescent probe
for detecting hypochloric acid in living cells and animals: utilizꢀ
ing a novel strategy for effectively modulating the fluorescence of
selenide and selenoxide. Chem. Commun., 2013, 49, 2445ꢀ2447.
19. Zhang, W.; Liu, W.; Li, P.; Kang, J.; Wang, J.; Wang, H.; Tang,
B. Reversible twoꢀphoton fluorescent probe for imaging of hypoꢀ
chlous acid in live cells and in vivo. Chem. Commun., 2015, 51,
2
2
016R1E1A1A02920873
018R1D1A1B07043568 to J. B). We also thank the Western
K.;
Seoul (LCꢀMS) and Daegu (FAB) branches of the Korea Basic
Science Institute for mass spectrometric data.
REFERENCES
1
0150ꢀ10153.
1
.
Winterbourn, C. C. Reconciling the chemistry and biology of
reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278ꢀ286.
Breckwoldt, M. O.; Chen, J. W.; Stangenberg, L.; Aikawa, E.
Rodriguez, E.; Qiu, S.; Moskowitz, M. A.; Weissleder, R. Trackꢀ
ing the inflammatory response in stroke in vivo by sensing the
enzyme myeloperoxidase. Proc. Natl. Acad. Sci. U. S. A. 2008,
2
0. Li, P.; Zhang, W.; Li, K.; Liu, X.; Xiao, H.; Zhang, W.; Tang, B.
Mitochondriaꢀtargeted reactionꢀbased twoꢀphoton fluorescent
probe for imaging of superoxide anion in live cells and in vivo.
Anal. Chem. 2013, 85, 9877ꢀ9881
2
.
2
1. Xu, W.; Zeng, Z.; Jiang, JꢀH.; Chang, YꢀT.; Yuan, L. Discerning
the Chemistry in Individual organelles with SmallꢀMolecule Fluoꢀ
rescent Proves. Angew. Chem. Int. Ed. 2016, 55, 13658ꢀ13699.
1
05, 18584ꢀ18589.
3
.
Barnham, K. J.; Masters, C. L.; Bush, A. I. Neurodegenerative
22. Zhu, H.; Fan, J.; Du, J.; Peng, X. Fluorescent Probes for Sensing
diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3,
and Imaging within Specific Cellular Organelles. Acc. Chem. Res.
2
05ꢀ214.
2
016, 49, 2115ꢀ2126.
4. Finkel, T.; Serrano, M.; Blasco, M. A. The common biology of
2
2
3. Satori, C. P.; Henderson, M. M.; Krautkramer, E. A.; Kostal, V.;
Distefano, M. M.; Arriaga, E. A. Bioanalysis of Eukaryotic Orgaꢀ
nelles. Chem. Rev. 2013, 113, 2733ꢀ2811.
cancer and ageing. Nature. 2007, 448, 767ꢀ774.
5
.
Chen, X.; Wang, F.; Hyun, J.; Wei, T.; Qiang, J.; Ren, X.; Shin, I.;
Yoon, J. Recent progress in the development of fluorescent, luꢀ
minescent and colorimetric probes for detection of reactive oxyꢀ
gen and nitrogen species. Chem. Soc. Rev. 2016, 45, 2976ꢀ3016
,
4. Zielonka, J.; Joseph, J.; Sikora, A.; Hardy M.; Ouari, O.;
VasquezꢀVivar, J.; Cheng, G.; Lopez, M.; Kalyanaraman, B. Miꢀ
tochondriaꢀTargeted TriphenylphosphoniumꢀBased Compounds:
Syntheses, Mechanisms of Action, and Therapeutic and Diagnosꢀ
tic Applications. Chem. Rev. 2017, 117, 10043ꢀ10120.
5. Ron, D.; Walter, P. Signal integration in the endoplasmic reticuꢀ
lum unfolded protein response. Nature Reviews Molecular Cell
Biology. 2007, 8, 516ꢀ529.
6. Chen, X.; Tian, X.; Shin, I.; Yoon, J. Fluorescent and luminescent
probes for detection of reactive oxygen and nitrogen species.
Chem. Soc. Rev. 2011, 40, 4783ꢀ4804
2
7
.
Ren, M.; Zhou, K.; He, L.; Lin, W. Mitochondria and lysosomeꢀ
targetable fluorescent probes for HOCl: recent advance and perꢀ
spectives. J. Mater. Chem. B. 2018, 6, 1716ꢀ1733
ACS Paragon Plus Environment