J . Org. Chem. 2000, 65, 1597-1599
1597
Sch em e 1
Asym m etr ic Ca ta lysis of th e F r ied el-Cr a fts
Rea ction w ith F lu or a l by Ch ir a l
Bin a p h th ol-Der ived Tita n iu m Ca ta lysts
th r ou gh Asym m etr ic Activa tion
Akihiro Ishii,† Vadim A. Soloshonok, and
Koichi Mikami*
Department of Chemical Technology, Tokyo Institute of
Technology, Ookayama, Meguro-ku, Tokyo 152-8552, J apan
report a practical synthetic route to chiral 1-aryl-2,2,2-
trifluoroethanol derivatives of synthetic importance8
through the F-C reaction with fluoral using chiral
binaphthol-derived titanium (BINOL-Ti) catalysts9 via
asymmetric activation.10 In combination with chiral
activators, the catalytic activity and enantioselectivity of
BINOL-Ti catalysts can be enhanced (Scheme 1).
Received October 27, 1999
In tr od u ction
Asymmetric synthesis of organofluorine compounds is
an important issue in pharmaceutical chemistry1 and
optoelectronic material science.2 In particular, asym-
metric catalysis of carbon-carbon bond forming reactions
is the most attractive method, because the carbon
skeleton of chiral organofluorine molecules can be con-
structed at the time of asymmetric induction.3 The
Friedel-Crafts (F-C) reaction is one of the most funda-
mental carbon-carbon bond forming reactions in organic
synthesis.4 However, its application to catalytic asym-
metric synthesis has been quite limited.5,6,7 Herein, we
Resu lt a n d Discu ssion
In the F-C reaction, the catalytic activity and enan-
tioselectivity of BINOL-Ti catalysts11 were found to be
critically influenced by the substituents of BINOL de-
rivatives (Table 1). (1) (R)-6,6′-Br2-BINOL-Ti catalyst was
the most effective catalyst. This F-C reaction did not
proceed easily as compared with the carbonyl-ene
reaction3d,e or the Mukaiyama-aldol reaction3d with fluo-
ral. Therefore, the role of the electron-withdrawing group
at the 6,6′-position of BINOL was found to be very
important for increasing the Lewis acidity (runs 1-3).
Relatively high enantioselectivity was obtained even
when using 1 mol % of (R)-6,6′-Br2-BINOL-Ti catalyst
(run 4). (2) Polar solvent was more effective for producing
higher para regioselectivity (run 5). When toluene was
used as a solvent, the enantio-enriched adducts of fluoral
to toluene were also obtained, along with the expected
F-C product with anisole. (3) Interestingly, a lower
reaction temperature leads to a decrease in the enantio-
selectivity of para-isomer, presumably because of the
oligomeric nature of the BINOL-Ti catalysts at lower
temperature (run 6). (4) The steric bulkiness of the alkyl
ether portion of the aromatic substrates was essential
for producing higher para regioselectivity (run 7). Inter-
estingly, the bis-adduct with fluoral was not obtained
even when using a large excess of fluoral in the reaction
of diphenyl ether (run 8).
* To whom correspondence should be addressed.
† On leave from Chemical Research Center, Central Glass Co. Ltd.,
Kawagoe, Saitama 350-1151.
(1) Reviews: (a) Ojima, I.; McCarthy, J . R.; Welch, J . T., Eds.
Biomedical Frontiers of Fluorine Chemistry; American Chemical
Society: Washington, D. C., 1996. (b) Resnati, G. Tetrahedron 1993,
49, 9385.
(2) Reviews: (a) Resnati, G.; Soloshonok, V. A., Eds. Tetrahedron
1996, 52, 1. (b) Olah, G. A.; Chambers, R. D.; Prakash, G. K. S.
Synthetic Fluorine Chemistry; Wiley: New York, 1992.
(3) (a) Reviews: Iseki, K. Tetrahedron 1998, 54, 13887. (b) Iseki,
K.; Kuroki, Y.; Kobayashi, Y. Tetrahedron Lett. 1997, 38, 7209. (c) Iseki,
K.; Oishi, S.; Sasai, H.; Shibasaki, M. Tetrahedron Lett. 1996, 37, 9081.
(d) Mikami, K.; Yajima, T.; Takasaki, T.; Matsukawa, S.; Terada, M.;
Uchimaru, T.; Maruta, M. Tetrahedron 1996, 52, 85. (e) Mikami, K.;
Yajima, T.; Terada, M.; Uchimaru, T. Tetrahedron Lett. 1993, 34, 7591.
(f) Soloshonok, V. A.; Hayashi, T. Tetrahedron Lett. 1994, 35, 2713.
(g) Hayashi, T.; Soloshonok, V. A. Tetrahedron: Asymmetry 1994, 5,
1091, and references therein.
(4) Reviews: (a) Smith, M. B. Organic Synthesis; McGraw-Hill: New
York, 1994;
p 1313. (b) Heaney, H. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford,
1991; Vol. 2, p 733. (c) Roberts, R. M.; Khalaf, A. A. in Friedel-Crafts
Alkylation Chemistry. A Century of Discovery; Dekker: New York,
1984. (d) Olah, G. A. Friedel-Crafts Chemistry; Wiley-Interscience:
New York, 1973.
The sense of asymmetric induction was the same as
observed in BINOL-Ti-catalyzed asymmetric reactions
such as the carbonyl-ene reaction11,13 and the Mu-
(5) Diastereoselective F-C type reaction: (a) Costa, P. R. R.; Cabral,
L. M.; Alencar, K. G.; Schmidt, L. L.; Vasconcellos, M. L. A. A.
Tetrahedron Lett. 1997, 38, 7021. (b) El Kaim, L.; Guyoton, S.; Meyer,
C. Tetrahedron Lett. 1996, 37, 375. (c) Bigi, F.; Sartori, G.; Maggi, R.;
Cantarelli, E.; Galaverna, G. Tetrahedron: Asymmetry 1993, 4, 2411,
and references therein. Double asymmetric synthesis: (d) Terada, M.;
Sayo, N.; Mikami, K. Synlett 1995, 411. (e) Casiraghi, G.; Bigi, F.;
Casnati, G.; Sartori, G.; Soncini, P.; Gasparri Fava, G.; Ferrari Belicchi,
M. J . Org. Chem. 1988, 53, 1779. Pictet-Spengler reaction: (f) Cox,
E. D.; Hameker, L. K.; Li, J .; Yu, P.; Czerwinski, K. M.; Deng, L.;
Bennett. D. W.; Cook, J . M. J . Org. Chem. 1997, 62, 44. (g) Dai, W.-
M.; Zhu, H. J .; Hao, X.-J . Tetrahedron Lett. 1996, 37, 5971. (h) Soe,
T.; Kawate, T.; Fukui, N.; Hino, T.; Nakagawa, M. Heterocycles 1996,
42, 347.
(6) Enantioselective F-C type reaction: (a) Erker, G.; van der
Zeijden, A. A. H. Angew. Chem., Int. Ed. Engl. 1990, 29, 512. (b) Bigi,
F.; Casiraghi, G.; Casnati, G.; Sartori, G.; Gasparri Fava, G.; Ferrari
Belicchi, M. J . Org. Chem. 1985, 50, 5018. Pictet-Spengler reaction:
(c) Kawate, T.; Yamada, H.; Soe, T.; Nakagawa, M. Tetrahedron:
Asymmetry 1996, 7, 1249.
(8) (a) Corey, E. J .; Bakshi, R. K. Tetrahedron Lett. 1990, 31, 611.
(b) Chong, J . M.; Mar, E. K. J . Org. Chem. 1991, 56, 893, and references
therein. (c) Corey, E. J .; Cheng, X.-M.; Cimprich, K. A.; Sarshar, S.
Tetrahedron Lett. 1991, 32, 6835. (d) Ramachandran, P. V.; Teodorovic,
A. V.; Gong, B.; Brown, H. C. Tetrahedron: Asymmetry 1994, 5, 1075.
(e) Fujisawa, T.; Sugimoto, T.; Shimizu, M. Tetrahedron: Asymmetry
1994, 5, 1095.
(9) Reviews: (a) Mikami, K. Pure and Appl. Chem. 1996, 68, 639.
(b) Mikami, K.; Terada, M.; Narisawa, S.; Nakai, T. Synlett 1992, 255.
(10) (a) Mikami, K.; Matsukawa, S. Nature 1997, 385, 613. (b)
Matsukawa, S.; Mikami, K. Tetrahedron: Asymmetry 1997, 8, 815. (c)
Matsukawa, S.; Mikami, K. Enantiomer 1996, 1, 69. (d) Matsukawa,
S.; Mikami, K. Tetrahedron: Asymmetry 1995, 6, 2571.
(11) Mikami, K.; Terada, M.; Nakai, T. J . Am. Chem. Soc. 1990, 112,
3949; 1989, 111, 1940; Mikami, K.; Terada, M.; Narisawa, S.; Nakai,
T. Org. Synth. 1993, 71, 14.
(7) Stereospecific F-C type reaction: (a) Toshimitsu, A.; Hirosawa,
C.; Tamao, K. Synlett 1996, 465. (b) Muehldorf, A. V.; Guzman-Perez,
A.; Kluge, A. F. Tetrahedron Lett. 1994, 35, 8755.
(12) Ohno, A.; Nakai, J .; Nakamura, K.; Goto, T.; Oka, S. Bull.
Chem. Soc. J pn., 1981, 54, 3486 [R]20D -35.9° (c 1.35, EtOH) for 80.2%
ee of R isomer.
10.1021/jo991691o CCC: $19.00 © 2000 American Chemical Society
Published on Web 02/08/2000