Paper
NJC
were taken from the mixture at the following reaction time: 3 h,
6 P. Azadi, O. R. Inderwildi, R. Farnood and D. A. Kin, Renewable
Sustainable Energy Rev., 2012, 21, 506–523.
6
h, 9 h, 12 h, 18 h, 24 h, 36 h and 48 h. After every sample had
been taken from the mixture, we followed the previous screening
procedure for purification and characterisation.
7 J. Zakzeski, P. C. Bruijnincx, A. L. Jongerius and B. M.
Weckhuysen, Chem. Rev., 2010, 110, 3552–3599.
Recovery of [emim][ABS]. After each depolymerisation reaction,
the mixture was acidified with 1 M HCl and centrifuged with
8 J. M. Pepper and Y. W. Lee, Can. J. Chem., 1969, 47, 723–727.
9 M. Koyama, Bioresour. Technol., 1993, 44, 209–215.
distilled water to precipitate and remove depolymerised lignin. 10 N. A. Stephenson and A. T. Bell, J. Mol. Catal. A: Chem., 2007,
The acidic aqueous filtrate containing ionic liquid, copper
275, 54–62.
chloride, and hydrochloric acid was neutralised using 1 M 11 C.-M. Che and J.-S. Huang, Chem. Commun., 2009,
NaOH. Next, the mixture was left under high vacuum at the
3996–4015.
temperature of 70 1C overnight to remove water. Acetonitrile 12 P. Zucca, F. Sollai, A. Garau, A. Rescigno and E. Sanjust,
100 mL) was added to the mixture to dissolve only the ionic
J. Mol. Catal. A: Chem., 2009, 306, 89–96.
liquid and to remove all the insoluble residue (copper chloride 13 K. C. Gupta, A. K. Sutar and C.-C. Lin, Coord. Chem. Rev.,
and sodium chloride) by filtration. The ionic liquid was recovered
2009, 253, 1926–1946.
by removing acetonitrile at 70 1C under high vacuum. The 14 R. Drago, B. Corden and C. Barnes, J. Am. Chem. Soc., 1986,
(
1
recovered ionic liquid was then analysed by H NMR to confirm
its structure.
108, 2453–2454.
15 A. Hay, H. Blanchard, G. Endres and J. Eustance, J. Am.
Chem. Soc., 1959, 81, 6335–6336.
Electrochemical measurement. Electrochemical experiments
were carried out at the temperature of 23 ꢃ 2 1C in a standard 16 W. Brackman and E. Havinga, Recl. Trav. Chim. Pays-Bas,
three-electrode cell configuration using a Bioanalytical Systems
1955, 74, 1021–1039.
(
BAS West Lafayette, Indiana) Model 100B potentiostat at a scan 17 H. Higashimura, K. Fujisawa, M. Kubota and S. Kobayashi,
ꢁ1
rate of 100 mV s . A glassy carbon disc electrode (1 mm
J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 1955–1962.
diameter, eDAQ) was used as the working electrode. A platinum 18 K. Saito, T. Masuyama, K. Oyaizu and H. Nishide, Chem. –
wire was employed as the reference electrode and another
Eur. J., 2003, 9, 4240–4246.
platinum wire as the counter electrode. The reference potential 19 S. Nanayakkara, A. F. Patti and K. Saito, Aust. J. Chem., 2013,
+
was calibrated against that of the Fc/Fc (Fc = ferrocene) redox
66, 60–66.
couple as an internal reference from measurements made on 20 S. Nanayakkara, A. F. Patti and K. Saito, Green Chem., 2014,
4
3
the oxidation of 1 mM Fc present in the same solution.
The voltammetric investigation was carried out in 0.5 mL of 21 Z. C. Zhang, Adv. Catal., 2006, 49, 153–237.
emim][ABS] in the presence of 0.0165 mmol Cu(I)Cl, and 22 H. Olivier-Bourbigou, L. Magna and D. Morvan, Appl. Catal.,
.33 mmol ligands. Prior to voltammetric experiments, the
A, 2010, 373, 1–56.
glassy carbon electrode was polished with 0.3 mm alumina 23 J. B. Binder, M. J. Gray, J. F. White, Z. C. Zhang and J. E. Holladay,
slurry on a clean polishing cloth (Buehler, USA), rinsed with
Biomass Bioenergy, 2009, 33, 1122–1130.
deionized water, washed with acetone and finally dried with 24 K. St ¨a rk, N. Taccardi, A. B o¨ smann and P. Wasserscheid,
16, 1897–1903.
[
0
nitrogen gas.
ChemSusChem, 2010, 3, 719–723.
2
2
5 B. J. Cox and J. G. Ekerdt, Bioresour. Technol., 2013, 134, 59–65.
6 A. J. Clark, A. E. Collis, D. J. Fox, L. L. Halliwell, N. James,
R. K. O’Reilly, H. Parekh, A. Ross, A. B. Sellars and H. Willcock,
J. Org. Chem., 2012, 77, 6778–6788.
Acknowledgements
The financial support of the ARC Industrial Transformation
Research Hub – Bioprocessing Advanced Manufacturing Initiative
2
7 D. M. Haddleton, D. J. Duncalf, D. Kukulj, M. C. Crossman,
S. G. Jackson, S. A. Bon, A. J. Clark and A. J. Shooter, Eur.
J. Inorg. Chem., 1998, 1799–1806.
8 A. J. Clark, D. J. Duncalf, R. P. Filik, D. M. Haddleton, G. H.
Thomas and H. Wongtap, Tetrahedron Lett., 1999, 40, 3807–3810.
9 A. J. Clark, G. M. Battle, A. M. Heming, D. M. Haddleton and
A. Bridge, Tetrahedron Lett., 2001, 42, 2003–2005.
(BAMI), Monash University and the China Scholarship Council
(CSC) is gratefully acknowledged.
2
2
Notes and references
1
F. S. Chakar and A. J. Ragauskas, Ind. Crops Prod., 2004, 20, 30 D. K. Seth and S. Bhattacharya, Polyhedron, 2011, 30, 2438–2443.
1
31–141.
31 S. Dehghanpour, N. Bouslimani, R. Welter and F. Mojahed,
Polyhedron, 2007, 26, 154–162.
32 A. J. Clark, Chem. Soc. Rev., 2002, 31, 1–11.
2
3
4
M. P. Pandey and C. S. Kim, Chem. Eng. Technol., 2011, 34, 29–41.
J. H. Grabber, Crop Sci., 2005, 45, 820–831.
J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim, P. F. 33 T.-H. Huang and M.-H. Zhang, Inorg. Chim. Acta, 2014, 410,
Schatz, J. M. Marita, R. D. Hatfield, S. A. Ralph and J. H.
Christensen, Phytochem. Rev., 2004, 3, 29–60.
150–155.
34 K. Saito, N. Kuwashiro and H. Nishide, Polymer, 2006, 47,
5
D. S. Argyropoulos, in Biotechnology in the Pulp and Paper
6581–6584.
Industry, ed. Karl-Erik L. Eriksson, Springer, Heidelberg, 35 K. Saito, T. Masuyama and H. Nishide, Green Chem., 2003, 5,
1st edn, 1997, ch. 3, pp. 127–158.
535–538.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016