Communications
Table 1: Ring-closing metathesis using 3c[a] at room temperature.
provide an opportunity to probe the
mechanism of the propagating steps
in the olefin metathesis reaction
without the problem of excess phos-
phine in the reaction medium, as
well as catalyst decomposition proc-
esses that do not involve the dis-
sociated phosphine ligand of cata-
lysts 1.[40]
[b]
Entry
Substrate
Product
RCL
t [min]
Conversion [%][c]
1
2
3
H
H
Me
1.0
0.1
1.0
<2
30
<10
100
100
100
4
5
H
Me
1.0
1.0
<10
60
100
98
Experimental Section
Complete experimental details, includ-
ing synthesis and characterization of all
the new compounds, can be found in the
Supporting Information.
6
–
5.0
<10
85
[a] Conditions: room temperature, toluene, [diene]=0.23m. [b] Catalyst loading. [c] Conversions
determined by H NMRspectroscopy.
Received: July 21, 2004
Revised: August 27, 2004
1
Keywords: carbene ligands ·
.
homogeneous catalysis · metathesis ·
ruthenium
substrate, with a second order rate constant of 5.9 Æ 0.3
10À4 mÀ1 sÀ1 at À108C.[36] By evaluating this rate constant as
a function of temperature (30 equiv of styrene), the thermo-
dynamic activation parameters of the reaction were measured
as DH° = 8.6(4) kcalmolÀ1 and DS° = À55(6) eu. The large,
negative activation entropy is consistent with a bimolecular
initiation step, which supports the notion that the measured
barrier corresponds to rate-limiting olefin binding. Never-
theless, even for this very unreactive substrate,[20] the magni-
tude of the second-order rate constant at À108C is compa-
rable to the initiation rate of 4.6 Æ 0.4 10À4 sÀ1 measured at
358C for the widely used Grubbs second-generation catalyst
1c.[18]
These results are an advance in the evolution of ruthe-
nium-based olefin-metathesis catalysis. Slow initiation has
been a limiting factor for the existing Grubbs-catalyst
portfolio and the phosphonium alkylidene compounds dis-
closed herein circumvent this problem by effectively elimi-
nating the phosphine-dissociation initiation step altogether.
In essence, all of the ruthenium added is actually operating as
a catalyst in these reactions as compared to the traditional
Grubbs catalysts, where the majority of ruthenium is tied up
as the non-active 1c. In compounds 3, initiation consists of the
much lower barrier olefin-binding event; subsequent meta-
[1] Handbook of Metathesis, Vol. 1–3 (Ed.: R. H. Grubbs), Wiley-
VCH, Weinheim, 2003.
[2] U. Frenzel, O. Nuyken, J. Polym. Sci. Part A 2002, 40, 2895.
[3] C. W. Bielawski, D. Benitez, R. H. Grubbs, Science 2002, 297,
2041.
[4] A. Fürstner, Angew. Chem. 2000, 112, 3140; Angew. Chem. Int.
Ed. 2000, 39, 3012.
[5] T. E. Hopkins, K. B. Wagener, Adv. Mater. 2002, 14, 1703.
[6] S. J. Connon, S. Blechert, Angew. Chem. 2003, 115, 1944; Angew.
Chem. Int. Ed. 2003, 42, 1900.
[7] A. K. Chatterjee, T.-L. Choi, D. P. Sanders, R. H. Grubbs, J. Am.
Chem. Soc. 2003, 125, 11360.
[8] S. D. Drouin, F. Zamainian, D. E. Fogg, Organometallics 2001,
20, 5495.
[9] J. Louie, C. W. Bielawski, R. H. Grubbs, J. Am. Chem. Soc. 2001,
123, 11312.
[10] R. R. Schrock, J. S. Murzdek, G. C. Bazan, M. Robbins, M.
Dimare, M. OꢀRegan J. Am. Chem. Soc. 1990, 112, 3875.
[11] R. R. Schrock, A. H. Hoveyda, Angew. Chem. 2003, 115, 4740;
Angew. Chem. Int. Ed. 2003, 42, 4592.
[12] T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18.
[13] E. L. Dias, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1997,
119, 3887.
=
[14] C. Adlhart, C. Hinderling, H. Baumann, P. Chen, J. Am. Chem.
Soc. 2000, 122, 8204.
[15] C. Adlhart, P. Chen, J. Am. Chem. Soc. 2004, 126, 3496.
[16] L. Cavallo, J. Am. Chem. Soc. 2002, 124, 8965.
[17] J. A. Love, M. S. Sanford, M. W. Day, R. H. Grubbs, J. Am.
Chem. Soc. 2003, 125, 10103.
[18] M. S. Sanford, J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001,
123, 6543.
[19] J. S. Kingsbury, J. P. A. Harrity, P. J. Bonitatebus, Jr., A. H.
Hoveyda, J. Am. Chem. Soc. 1999, 121, 791.
[20] S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am.
Chem. Soc. 2000, 122, 8168.
[21] a) H. Wakamatsu, S. Blechert, Angew. Chem. 2002, 114, 832;
Angew. Chem. Int. Ed. 2002, 41, 794; b) H. Wakamatsu, S.
Blechert, Angew. Chem. 2002, 114, 2509; Angew. Chem. Int. Ed.
2002, 41, 2403.
thesis to liberate [(CH2 CH)PR3][B(C6F5)4] provides rapid
and direct access to the propagating 14-electron ruthenium
alkylidene complexes without any free phosphine present to
drain the catalyst pool of active ruthenium.
The benefits of fast-initiating catalysts for a variety of
metathesis applications are many. Lower catalyst loadings can
be achieved which improves the economics and the environ-
mental impact associated with use of these catalysts. Reac-
tions can be performed at much lower temperatures, poten-
tially providing greater enantioselectivity in asymmetric
RCM reactions[37] and better chemoselectivity in commer-
cially important CM processes.[38] In ROMP applications,
rapid initiation leads to polymer products with narrower
molecular-weight distributions.[39] Finally, the new compounds
6164
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 6161 –6165