ORGANIC
LETTERS
2
005
Vol. 7, No. 14
985-2988
CO-Trapping Reaction under
Thermolysis of Alkoxyamines:
Application to the Synthesis of
2
3,4-Cyclopenta-1-tetralones
†
†
†
,†
Yoshitaka Uenoyama, Masaaki Tsukida, Takashi Doi, Ilhyong Ryu,* and
Armido Studer*
,
‡
Department of Chemistry, Graduate School of Science, Osaka Prefecture UniVersity,
Sakai, Osaka 599-8531, Japan, and Organisch-Chemisches Institut, Westf a¨ lische
Wilhelms-UniVersit a¨ t M u¨ nster, Corrensstrasse 40, 48149 M u¨ nster, Germany
ryu@c.s.osakafu-u.ac.jp; studer@uni-muenster.de
Received April 28, 2005
ABSTRACT
An efficient one-pot sequence comprising a PRE-mediated radical 5-exo-cyclization, a radical carbonylation, a nitroxide trapping reaction, and
a subsequent acid-catalyzed Friedel
−Craft-type acylation provides a new entry into 3,4-cyclopenta-1-tetralones. Eight examples are presented.
3
Over the last few decades, radical chemistry has gained
increasing importance in synthetic organic chemistry. While
cesses such as living radical polymerizations. Using TEMPO
(2,2,6,6-tetramethylpiperidine-1-oxyl) and related nitroxides,
one of us has previously developed radical cyclization and
polymerization reactions which are controlled by the per-
1
nitroxides are known to efficiently trap radicals to give
alkoxyamines, thermally induced reverse homolysis of
activated alkoxyamines has recently been recognized as a
facile process for the clean generation of C-centered radicals.
This unique “go & return” propensity of alkoxyamines led
organic chemists to design radical reaction processes based
on key basic sequences, which involve (1) the homolysis of
alkoxyamines to give carbon radical/nitroxide pairs, (2)
radical reactions of the resulting carbon radicals, and (3)
recombination of the resulting radicals with nitroxides. In
this context, alkoxyamines have been used not only for basic
2
,4
sistent radical effect (PRE).
In this paper, we focus on the participation of carbon
monoxide in TEMPO-based radical cyclization chemistry.
5
(
2) (a) Studer, A. Angew. Chem., Int. Ed. 2000, 39, 1108. (b) Marque,
S.; Fischer, H.; Baier, E.; Studer, A. J. Org. Chem. 2001, 66, 1146. (c)
Molawi, K.; Schulte, T.; Siegenthaler, K. O.; Wetter, C.; Studer, A. Chem.
Eur. J. 2005, 11, 2335. (d) Studer, A.; Schulte, T. Chem. Rec. 2005, 5, 27.
Studer, A. Chem. Soc. ReV. 2004, 33, 267. Wetter, C.; Jantos, K.; Woithe,
K.; Studer, A. Org. Lett. 2003, 5, 2899. Wetter, C.; Studer, A. Chem.
Commun. 2004, 174. Teichert, A.; Jantos, K.; Harms, K.; Studer, A. Org.
Lett. 2004, 6, 3477. Herrera, A. J.; Studer, A. Synthesis 2005, 1389. Allen,
A. D.; Cheng, B.; Fenwick, M. H.; Givehchi, B.; Henry-Riyad, H.; Nikolaev,
V. A.; Shikhova, E. A.; Tahmassebi, D.; Tidwell, T. T. Wang, S. J. Org.
Chem. 2001, 66, 2611. Allen, A. D.; Fenwick, M. F.; Henry-Riyad, H.;
Tidwell T. T. J. Org. Chem. 2001, 66, 5759. Leroi, C.; Fenet, B.; Couturier,
J.-L.; Guerret, O.; Ciufolini, M. A. Org. Lett. 2003, 5, 1079.
(3) Solomon, D. H.; Rizzardo, E.; Cacioli, P. US Patent 4,581,429; P.
Eur. Pat. Appl. 135280; Chem. Abstr. 1985, 102, 221335q. Georges, M.
K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Macromolecules
1993, 26, 2987. Review: Hawker, C. J.; Bosman, A. W.; Harth, E. Chem.
ReV. 2001, 101, 3661.
2
organic transformations but also in iterative reaction pro-
†
Osaka Prefecture University.
Westf a¨ lische Wilhelms-Universit a¨ t M u¨ nster.
‡
(
1) For reviews on radical chemistry, see: (a) Renaud, P., Sibi, M. P.,
Eds. Radicals in Organic Synthesis; Wiley-VCH: Weinheim, Germany,
001; Vols. 1 and 2. (b) Curran, D. P.; Porter, N. A.; Giese, B.
2
Stereochemistry of Radical Reactions; VCH: Weinheim, 1996. (c) Moth-
erwell, W. B.; Crich, D. Free Radical Chain Reactions in Organic Synthesis;
Academic: London, 1992.
1
0.1021/ol050951n CCC: $30.25
© 2005 American Chemical Society
Published on Web 06/15/2005