10.1002/anie.201810253
Angewandte Chemie International Edition
COMMUNICATION
[1] a) E. F. V. Scriven, K. Turnbull, Chem. Rev. 1988, 88, 297; b) S.Brꢀse, C.
Gil, K.Knepper, K. Zimmermann, Angew. Chem., Int. Ed. 2005, 44, 5188;
c) A. I. O. Suarez, V., Reek, J. N. H. Lyaskovskyy, J. I. van der Vlugt, B.
de Bruin, Angew. Chem., Int. Ed. 2013, 52, 12510; d) K. Shin, H. Kim, S.
Chang, Acc. Chem. Res. 2015, 48, 1040; e) Y. Park, Y. Kim, S. Chang,
Chem. Rev. 2017, 117, 9247.
dppb with TMSN3 and 1g in toluene-d8 within 10 mins, three new
resonance appeared at -73.16, -75.28, -77.17 ppm. After 3
hours, the peaks at -64.85 ppm (from 1g), -73.16 ppm
disappeared and the peak at 75.28 ppm becomes smaller. This
result suggests that -73.16 ppm and -75.28 are most likely the
reaction intermediates. The key reaction intermediates were
then detected by ESI-MS (Fig. 1), which is a direct and reliable
method for the characterization of reaction intermediates in
situ.[12] When the reaction mixed DPPB and TMSN3 in DCM was
monitored, an ion of m/z 542 was obtained (Fig. 1a), indicating
the existence of intermediate IA. The SAESI-MS/MS spectrum
of the reaction mixture of 1g, TMSN3 and PPh3, exhibits the
peak at m/z 612 (Fig. 1b) and m/z 350 (Fig. S7), which support
the structures of intermediates IB or IC and ID.
[2] a) H. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 2, 635; b) Y. G.
Gololobov, L. F.Kasukhin, Tetrahedron 1992, 48,1353; c) J. E. Leffler, R.
D. Temple, J. Am. Chem. Soc. 1967, 89, 5235; d) W. Q. Tian, Y. A. Wang,
J. Chem. Theory Comput. 2005, 1, 353; e) L. Horner, A. Gross, Justus
Liebigs Ann. Chem. 1955, 591, 117; f) B. L. Nilsson, L. L. Kiessling, R. T.
Raines, Org. Lett. 2000, 2,1939.
[3] a) H. A.van Kalkeren, J. J. Bruins, F. P. J. T. Rutjes, F. L. van Delft, Adv.
Synth. Catal. 2012, 354, 1417; b) A. D.Kosal, E. E. Wilson, B. L.Ashfeld,
Angew. Chem. Int. Ed. 2012, 51, 12036; Angew. Chem. 2012, 124, 12202.
c) K. G. Andrews, R. M. Denton, Chem. Commun. 2017, 53, 7982.
[4] H. H.Chou, R. T. Raines, J. Am. Chem. Soc. 2013, 135, 14936.
[5] E. L. Myers, R. T. Raines, Angew. Chem. Int. Ed. 2009, 48, 2359; Angew.
Chem. 2009, 121, 2395.
[6] For reviews, see: a) X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 2001, 34,
535; b) J. L. Methot, W. R. Roush, Adv. Synth. Catal. 2004, 346, 1035; c)
L.-W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 2008, 37, 1140; d) B. J.
Cowen, S. J. Miller, Chem. Soc. Rev. 2009, 38, 3102; e) A. Marinetti, A.
Voituriez, Synlett 2010, 2010, 174; f) Y. Wei, M. Shi, Acc. Chem. Res.
2010, 43, 1005; g) F. Lꢁpez, J. Mascareꢂas, Chem.−Eur J. 2011, 17, 418;
h) Q.-Y. Zhao, Z. Lian, Y. Wei, M. Shi, Chem. Commun. 2012, 48, 1724; i)
Y. C. Fan, O. Kwon, Chem. Commun. 2013, 49, 11588; j) Z. Wang, X. Xu,
O. Kwon, Chem. Soc. Rev. 2014, 43, 2927; k) P. Xie, Y. Huang, Org.
Biomol. Chem. 2015, 13, 8578; l) W. Li, J. Zhang, Chem. Soc. Rev. 2016,
45, 1657; m) T. Wang, X. Han, F. Zhong, W. Yao, Y. Lu, Acc. Chem. Res.
2016, 49, 1369; n) Y. Wei, M. Shi, Org. Chem. Front. 2017, 4, 1876.
[7] For some selected examples on phosphine-catalyzed reactions since 2015,
see: a) Y. Gu, P. Hu, C. Ni, X. Tong, J. Am. Chem. Soc. 2015, 137, 6400;
b) L. Zhang, H. Liu, G. Qiao, Z. H. Liu, Y. Xiao, H. Guo, J. Am. Chem. Soc.
2015, 137, 4316; c) S. Lee, Y. Fujiwara, A. Nishi-guchi, M. Kalek, G. Fu, J.
Am. Chem. Soc. 2015, 137, 4587; d) Y. Gu, P. Hu, C. Ni, X. Tong, J. Am.
Chem. Soc. 2015, 137, 6400; e) E. Li, H. Jin, P. Jia, X. Dong, Y. Huang,
Angew. Chem. Int. Ed. 2016, 55, 11591; Angew. Chem. 2016, 128, 11763;
f) M. Sankar, M. Castro, C. Golz, C. Strohmann, K. Kumar, Angew. Chem.
Int. Ed. 2016, 55, 9709; Angew. Chem. 2016, 128, 9861; g) X. Han, W.-L.
Chan, W. Yao, Y. Wang, Y. Lu, Angew. Chem. Int. Ed. 2016, 55, 6492;
Angew. Chem. 2016, 128, 9861; h) L. Cai, K. Zhang, O. Kwon, J. Am.
Chem. Soc. 2016, 138, 3298; i) B. Satpathi , S. S. V. Ramasastry, Angew.
Chem. Int. Ed. 2016, 55, 1777; Angew. Chem. 2016, 128, 1809; j) H.-Y.
Wang, C.-W. Zheng, Z. Chai, J.-X. Zhang, G. Zhao, Nat. Commun. 2016,
7, 12720; k) C. Wang, Z. Gao, L. Zhou, C. Yuan, Z. Sun, Y. Xiao, H. Guo,
Org. Lett. 2016, 18, 3418; l) H. Ni, X. Tang, W. Zheng, W. Yao, N. Ullah,
Y. Lu, Angew. Chem. Int. Ed. 2017, 56, 14222; Angew. Chem. 2017, 129,
14410; m) B. Mao, W. Shi, J. Liao, H. Liu, C. Zhang, H. Guo, Org. Lett.
2017, 19, 6340; n) J. Chen, Y. Huang, Org. Lett. 2017, 19, 5609.
[8] a) X. Su, W. Zhou, Y. Li, J. Zhang, Angew. Chem. Int. Ed. 2015, 54, 6874;
Angew. Chem. 2015, 127, 6978; b) W. Zhou, X. Su. M. Tao, C. Zhu, Q.
Zhao, J. Zhang, Angew. Chem. Int. Ed. 2015, 54, 14853; Angew. Chem.
2015, 127, 15066; c) W. Zhou, P. Chen, M. Tao, X. Su, Q. Zhao, J. Zhang,
Chem. Commun. 2016, 52, 7612; d) W. Zhou, L, Gao, M. Tao, X. Su, Q.
Zhao, J. Zhang, Acta Chim. Sinica 2016, 74, 800; e) P. Chen, Z. Yue, X.
Lv, L. Wang, J. Zhang, Angew. Chem. Int. Ed. 2016, 55, 13316; Angew.
Chem. 2016, 128, 13510; f) H. Wang, W. Zhou, M. Tao, A. Hu, J. Zhang,
Org. Lett. 2017. 9, 1710; g) W. Zhou, H. Wang, M. Tao, C. Zhu, T. Lin, J.
Zhang, Chem. Sci. 2017, 8, 4660; h) H. Wang, W. Lu, J. Zhang, Chem. -
Eur. J. 2017, 23, 13587.
Figure 1. ESI-MS studies: a) SAESI-MS spectrum of the reaction solution in
DCM, showing the complex ion [TMSN3(DPPB)+H]+ at m/z 542. b) The
SAESI-MS/MS spectrum of [C31H31ClF3N3OPSi]+ at m/z 612.
In summary, we have developed
a novel strategy for
phosphine-catalyzed difunctionalization of ,-enones under the
mild reaction conditions. In particular, it is the first example of
construction of -diazo carbonyl compounds under phosphine
catalysis conditions. In contrast, the corresponding -azide
compounds would be furnished with the use of ,-disubstituted
enones or 3-aroyl acrylates via the direct monofunctionalization
(azidation) reaction. Furthermore, a preliminary result showed
that an asymmetric variant of the reaction has also been realized
with quite high enantioselectivities with the use of nucleophilic
bifunctional phosphine P4 as a chiral catalyst, which providing a
facile access to various functional fluoroalkylated -amino -
diazocarbonyl compounds. Mechanistic studies shed some light
on the mode of catalyst activation and intermediate formation.
ESI-MS studies were carried out to detect the reaction
intermediates to explain the process.
[9] The X-ray crystal structure information is available at the Cambridge
Crystallographic Data Centre (CCDC) under deposition number CCDC
1819849 (2e), CCDC 1866246 ((-)-2e) and CCDC 1819850 (3d).
[10] B. L. Feringa, J. F. G. A. Jansen, Synthesis 1988, 1988, 184.
[11] a) M. SAÏDOUALI, M. V. R. CARRIÉ, Tetrahedron 1980, 36, 1821; b) L.
Benati, P. C. Montevecchi, J. Chem. Soc., Perk. Trans 1: Org. and Bio-
Org. Chem. 1989, 12, 2235.
Acknowledgements
We are grateful to 973 Programs (2015CB856600), National
Natural Science Foundation of China (21425205) and
Changjiang Scholars and Innovative Research Team in
University (PCSIRT) for financial supports.
[12] a) V. B. Di Marco, G. G. Bombi, Mass Spectrom. Rev. 2006, 25, 347; b) K.
L. Vikse, Z. Ahmadi, J. S. McIndoe, Coord. Chem. Rev. 2014, 279, 96.
Keywords: phosphine catalysis• alkene difunctionalization•
diazo compounds• azide •enones
This article is protected by copyright. All rights reserved.