further 14 h, PMDETA (3 mL) was layered carefully onto the reaction
mixture. After 1 week, large yellow-orange, block-shaped crystals of
[
(1H)SnLiꢁPMDETA]
crystals of [Sn (1H) (1)
pure samples of [(1H)SnLiꢁPMDETA]
2
had formed, in which a few yellow-orange
7
2
4
][2(LiPMDETA)
2
]
2
are also present. Analytically-
can be manually separated.
2
(
Elemental analysis, found C 43.9, H 6.9, N 16.3, calcd for [(1H)SnLiꢁ
PMDETA]
C 44.6, H 7.0, N 17.3.) However, crystalline [(1H)SnLiꢁ
PMDETA] and [Sn (1H) (1) ][2(LiPMDETA) proved to be too
2
2
7
2
4
2 2
]
1
13
insoluble to obtain solution H or C NMR spectra (only hydrolysis
products were observed).
+
ꢀ
y Crystal data: [3][3H] Cl ꢁ7H
2 8 7
O, C24H35ClN O , M = 583.05,
ꢀ
triclinic, space group P1, Z = 2, a = 7.0826(2), b = 12.5439(4),
˚
c = 16.0868(6) A, a = 82.669(1), b = 78.708(2), g = 84.163(2)1,
3
ꢀ1
ꢀ3
,
˚
V = 1385.75(8) A , m(Mo–Ka) = 0.196 mm , rcalc = 1.397 Mg m
T = 180(2) K. Total reflections 14 267, unique 6208 (Rint = 0.053).
= 0.076 [I > 2s(I)] and wR
= 0.237 (all data). [(1H)SnLiꢁ
PMDETA] : C30 56Li 10Sn , M = 808.11, monoclinic, space group
P21/n, Z = 2, a = 13.9707(3), b = 9.3155(2), c = 14.8029(3) A,
R
1
2
Scheme 2 Proposed mechanism of formation of the triazolyl anion
+
from o-phenylene diamine (the Li counterions have been omitted for
2
H
2
N
2
˚
clarity).
3
ꢀ1
˚
b = 106.888(1)1, V = 1843.43(7) A , m(Mo–Ka) = 1.389 mm
,
ꢀ3
r
3
[
calc = 1.456 Mg m , T = 180(2) K. Total reflections 23029, unique
760 (Rint = 0.060). R = 0.036 [I > 2s(I)] and wR = 0.087 (all data).
Sn (1H) (1) : C78 28Sn , M = 2310.63,
1
2
7
2
4
][2ꢁLiPMDETA]
2
H122Li
4
N
7
ꢀ
triclinic, space group P1, Z = 2, a = 13.86730(10), b = 18.7128(2),
c = 20.1729(3) A, a = 97.4860(10), b = 104.4300(10), g = 103.9620(10)1,
˚
3
ꢀ1
ꢀ3
,
˚
V = 4817.83(9) A , m(Mo–Ka) = 1.839 mm , rcalc = 1.593 Mg m
T = 180(2) K. Total reflections 41 657, unique 13 382 (Rint = 0.045).
= 0.056 [I > 2s(I)] and wR = 0.185 (all data). Nonius KappaCCD
diffractometer, solved by direct methods and refined by full-matrix least
R
1
2
2
¨
squares on F (G. M. Sheldrick, SHELX-97, Gottingen, 1997). CCDC
Fig. 4 Heterocycles that are potentially accessible by oxidative
796653, 796654 and 796655.
dehydrocoupling.
1
2
L. Lochmann, Eur. J. Inorg. Chem., 2000, 115.
R. E. Mulvey, F. Mongin, M. Uchiyama and Y. Kondo, Angew.
Chem., Int. Ed., 2007, 46, 3802.
2ꢀ
intermediacy of a tetraazopentalyl dianion [(C H N)N]
2
(the
6
4
3
4
R. E. Mulvey, Organometallics, 2006, 25, 1060; R. E. Mulvey, Acc.
Chem. Res., 2009, 42, 743.
F. Garcıa, S. M. Humphrey, R. A. Kowenicki, E. J. L. McInnes,
´
C. M. Pask, M. McPartlin, J. M. Rawson, M. L. Stead, A. D. Woods
and D. S. Wright, Angew. Chem., Int. Ed., 2005, 44, 3456.
R. J. Less, R. Melen, V. Naseri and D. S. Wright, Chem. Commun.,
N analogue of the tetraphosphane dianion in Scheme 1) cannot
be discounted in this case but does not appear to be necessary
ꢀ
for the formation of the [2] anion.
In summary, we have revealed for the first time the potential
5
6
2 n
of redox-active main group E(NMe ) /RM superbases to
2
009, 4929.
oxidatively dehydrocouple N–H bonds. In the current study
this provides access to 1,2,3-triazole through a series of reactions
which is unknown with transition metal counterparts. This new
methodology might well be useful for other ring systems such as
imidazoles (A), oxadiazoles (B) and diazaphospholes (C) (Fig. 4)
and we are exploring this potential.
S. Greenberg and D. W. Stephan, Chem. Soc. Rev., 2008, 37, 1482;
D. W. Stephan, Angew. Chem., Int. Ed., 2000, 39, 314; T. J. Clark,
K. Lee and I. Manners, Chem.–Eur. J., 2006, 12, 8634;
R. Waterman, Dalton Trans., 2009, 18; R. Waterman, Curr. Org.
Chem., 2008, 12, 1322.
(a) N. Etkin, M. C. Fermin and D. W. Stephan, J. Am. Chem. Soc.,
1997, 119, 2954; (b) A. J. Hoskin and D. W. Stephan, Angew.
Chem., Int. Ed., 2001, 40, 1865.
7
8
We gratefully acknowledge the EPSRC (D.S.W., V.N.) and
The Leverhulme Trust (R.J.L.) for financial support. We also
thank Dr J. E. Davies (Cambridge) for collecting crystal data
F. Garcıa, R. J. Less, V. Naseri, M. McPartlin, J. M. Rawson,
´
M. Sancho Tomas and D. S. Wright, Chem. Commun., 2008, 859;
J. M. Goodman, R. J. Less, V. Naseri, E. J. L. McInnes,
R. E. Mulvey and D. S. Wright, Dalton Trans., 2008, 6454.
Y.-K. Lim, K.-S. Lee and C.-G. Cho, Org. Lett., 2003, 5, 979.
on [(1H)SnLiꢁPMDETA]
2
and [Sn (1H)
7
2
(1)
4
][2ꢁLiPMDETA]
2
.
9
1
1
´
0 A. Grirrane, A. Corma and H. Garcıa, Science, 2008, 322, 1661.
1 C. Zhang and N. Jiao, Angew. Chem., Int. Ed., 2010, 49, 6174.
Notes and references
z Synthesis of 2H: a mixture of o-phenylene diamine (208 mg, 2.0 mmol)
and Sn(NMe (414 mg, 2.0 mmol) was dissolved in 30 mL thf at
5 1C and stirred for 20 min. To the orange solution at 25 1C was
added BuLi (1.7 mol L in heptane, 2.4 mL, 4.0 mmol). The mixture
was brought to reflux (16 h), turning deep blood red (after ca. 1 h).
The mixture was cooled to room temperature and the solvent removed
under vacuum and replaced with DCM (30 mL). This solution was
hydrolyzed with 30 mL of distilled water and dilute HCl(aq) added until
the aqueous phase was of pH 8. The organic phase was separated and
12 S.-M. Peng and D.-S. Liaw, Inorg. Chim. Acta, 1986, 113, L11;
S. K. Brownstein and G. D. Enright, Acta Crystallogr., Sect. C:
Cryst. Struct. Commun., 1995, 51, 1579; S. Stankovic and D. Lazar,
´
2 2
)
2
t
ꢀ1
Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1995, 51, 1581.
13 For example, M. G. Miles and J. D. Wilson, Inorg. Chem., 1975,
14, 2357.
+
14 Within the range of ion–dipole areneꢁ ꢁ ꢁLi interactions: Search of
the Cambridge Crystallographic Data Base (Aug. 2010), range
˚
2.241–3.442 A (mean 2.47).
15 F. Benevelli, E. L. Doyle, E. A. Harron, N. Feeder, E. A. Quadrelli,
dried with MgSO
H NMR spectroscopy (see ESIw) showed that this consists of a
4
. Removal of the solvent gave a yellow semi-solid.
1
D. Sa
D. R. Armstrong, F. Benevelli, A. D. Bond, N. Feeder, E. A. Harron,
A. D. Hopkins, M. McPartlin, D. Moncrieff, D. Saez, E. A. Quadrelli
and D. S. Wright, Inorg. Chem., 2002, 41, 1492.
´
ez and D. S. Wright, Angew. Chem., Int. Ed., 2000, 39, 1501;
+
ꢀ
mixture of 1H
were deposited from the acidified aqueous residue after storage for
week at room temperature. [(1H)SnLiꢁPMDETA] ; Sn(NMe
1 mol L solution in toluene, 0.45 mL, 0.45 mmol) was added
dropwise to a solution of o-phenylene diamine (45 mg, 0.42 mmol) in
4
, 2H and 3. Deep red crystals of [3][3H] Cl ꢁ7H
2
O
´
1
(
2
2 2
)
ꢀ1
16 N. H. Buttrus, C. Eaborn, P. B. Hitchcock, J. D. Smith,
J. G. Stamper and A. C. Sullivan, Chem. Commun., 1986, 969.
17 Search of the Cambridge Crystallographic Data Base (Dec. 2010),
ꢀ1
1.5 mL thf at room temperature and stirred for 1.5 h. nBuLi (1.6 mol L
.
..
˚
... ...
in hexanes, 0.62 mL, 1.0 mmol) was then added dropwise at room
temperature, producing a clear, orange solution. After stirring for a
NꢀN range 1.275–1.388
A
(mean 1.33), NꢀNꢀN range
105.0–117.81 (mean 111.61).
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6129–6131 6131