10.1002/anie.201903152
Angewandte Chemie International Edition
COMMUNICATION
[9] a) T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller,
M. D. Hager, U. S. Schubert, Nature 2015, 527, 78-81; b) T. Janoschka, N.
Martin, M. D. Hager, U. S. Schubert, Angew. Chem. Int. Ed. 2016, 55,
14427-14430; c) T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, Adv. Energy
Mater. 2016, 6, 1501449-1501449; d) B. Hu, C. DeBruler, Z. Rhodes, T. L.
Liu, J. Am. Chem. Soc. 2017, 139, 1207-1214; e) L. Fan, C. Jia, Y. G. Zhu,
Q. Wang, ACS Energy Lett. 2017, 2, 615-621; f) C. DeBruler, B. Hu, J.
Moss, X. Liu, J. Luo, Y. Sun, T. L. Liu, Chem 2017, 3, 961-978.
[10] a) A. Ghosh, S. Mitra, RSC Adv. 2015, 5, 105632-105635; b) S. Sen, J.
Saraidaridis, S. Y. Kim, G. T. R. Palmore, ACS Appl. Mater. Interfaces.
2013, 5, 7825-7830; c) S. M. Beladi-Mousavi, S. Sadaf, A. M. Mahmood, L.
Walder, ACS Nano 2017, 11, 8730-8740.
In conclusion, a series of benzylated chalcogenoviologens and
poly(chalcogenoviologens) with multiple, stable and reversible
redox centers were synthesized. These molecules revealed
excellent electron-accepting and electrochromic properties.
Based on these novel characteristics, chalcogenoviologens and
their polymers were tested as electrode materials in organic
radical Li-ion batteries. With the introduction of heavier chalcogen
atoms, the second discharge capacity and cycle stability were
enhanced dramatically, especially in the case of Te-BnV (2d).
Similarly, poly(chalcogenoviologens) showed promising high-
performance rates and long-life cycles of ORLIBs. The maximum
second discharge capacity of poly(Te-BnV) (4d) reached up to
684 mAh g-1 at a current density of 100 mA g-1 and the specific
discharge capacity became stable and reached 502 mAh g-1 when
the Coulombic efficiency approached 100%, making it the highest
reported capacity for a viologen-based electrode to date. This was
attributed to the increased electric conductivity and extra lithiation
processes on Te atom. These processes were examined in
[11] a) M. J. Lacey, J. T. Frith, J. R. Owen, Electrochem. Commun. 2013, 26,
74-76; b) L. Yang, J. T. Frith, N. Garcia-Araez, J. R. Owen, Chem. Commun.
2015, 51, 1705-1708.
[12] a) L. Cao, S. Sadaf, S. M. Beladi-Mousavi, L. Walder, Eur. Polym. J. 2013,
49, 1923-1934; b) N. Sano, W. Tomita, S. Hara, C.-M. Min, J.-S. Lee, K.
Oyaizu, H. Nishide, ACS Appl. Mater. Interfaces. 2013, 5, 1355-1361; c) M.
Yao, H. Sano, H. Ando, T. Kiyobayashi, Sci. Rep. 2015, 5, 10962; d) H. Wu,
Y. Cao, L. Geng, C. Wang, Chem. Mater. 2017, 29, 3572-3579; e) S.
Perticarari, Y. Sayed-Ahmad-Baraza, C. Ewels, P. Moreau, D. Guyomard,
P. Poizot, F. Odobel, J. Gaubicher, Adv. Energy Mater. 2018, 8, 1701988.
[13] a) Y. H. Zhu, Y. B. Yin, X. Yang, T. Sun, S. Wang, Y. S. Jiang, J. M. Yan,
X. B. Zhang, Angew. Chem. Int. Ed. 2017, 56, 7881-7885; b) R. A. Rincón,
G. Heydenrych, Batteries & Supercaps 2018, 1, 3-5; c) M. Duduta, S. de
Rivaz, D. R. Clarke, R. J. Wood, Batteries & Supercaps 2018, 1, 131-134;
d) N. Hergué, B. Ernould, A. Minoia, R. Lazzaroni, J.-F. Gohy, P. Dubois,
O. Coulembier, Batteries & Supercaps 2018, 1, 102-109; e) R. Vaidya, V.
Selvan, P. Badami, K. Knoop, A. M. Kannan, Batteries & Supercaps 2018,
1, 75-82; f) Y. H. Zhu, X. Yang, X. B. Zhang, Angew. Chem. Int. Ed. 2017,
56, 6378-6380.
details and later applied in the fabrication of
a flexible
electrochromic battery. The explored versatile and efficient
strategy offers a new platform for the development of next-
generation high-capacity radical lithium-ion battery electrodes for
flexible hybrid visual electronics.
Acknowledgements
This work was supported by the Natural Science Foundation of China
(21704081, 21875180), the Fundamental Research Funds for the Central
Universities (1191329805), Natural Science Foundation of Shaanxi province
(2018JM2026), National 1000-Plan program, and the Cyrus Chung Ying Tang
Foundation. We thank Drs. Yu Wang and Gang Chang and Axin Lu at
Instrument Analysis Center of Xi'an Jiaotong University for their assistance with
Raman spectroscopy and Elemental analysis and HRMS. We also thank Prof.
Dingxin Liu for his help with EPR measurements.
[14] a) M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433-11456; b) C.
Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M. Zhao, P.
Urbankowski, L. Miao, J. Jiang, Y. Gogotsi, Angew. Chem. Int. Ed. 2018,
57, 1846-1850; c) X. Chi, Y. Liang, F. Hao, Y. Zhang, J. Whiteley, H. Dong,
P. Hu, S. Lee, Y. Yao, Angew. Chem. Int. Ed. 2018, 57, 2630-2634.
[15] a) S. Muench, A. Wild, C. Friebe, B. Haupler, T. Janoschka, U. S. Schubert,
Chem. Rev. 2016, 116, 9438-9484; b) N. Wang, J. He, Z. Tu, Z. Yang, F.
Zhao, X. Li, C. Huang, K. Wang, T. Jiu, Y. Yi, Y. Li, Angew. Chem. Int. Ed.
2017, 56, 10740-10745; c) Y. Zhang, J. Duan, D. Ma, P. Li, S. Li, H. Li, J.
Zhou, X. Ma, X. Feng, B. Wang, Angew. Chem. Int. Ed. 2017, 56, 16313-
16317.
Keywords: poly(chalcogenoviologens) • multiple redox centers •
electrochromism • electrode materials • organic Li-ion batteries
[16] a) L. Bugnon, C. J. H. Morton, P. Novak, J. Vetter, P. Nesvadba, Chem.
Mater. 2007, 19, 2910-2914; b) Y. Imada, H. Nakano, K. Furukawa, R. Kishi,
M. Nakano, H. Maruyama, M. Nakamoto, A. Sekiguchi, M. Ogawa, T. Ohta,
Y. Yamamoto, J. Am. Chem. Soc. 2016, 138, 479-482; c) H. Tokue, T.
Murata, H. Agatsuma, H. Nishide, K. Oyaizu, Macromolecules 2017, 50,
1950-1958; d) K. Hatakeyama-Sato, H. Wakamatsu, R. Katagiri, K. Oyaizu,
H. Nishide, Adv. Mater. 2018, 30, 1800900; e) K. A. Hansen, J. Nerkar, K.
Thomas, S. E. Bottle, A. P. O'Mullane, P. C. Talbot, J. P. Blinco, ACS Appl.
Mater. Interfaces. 2018, 10, 7982-7988.
[1] L. A. Vermeulen, M. E. Thompson, Nature 1992, 358, 656-658.
[2] a) A. N. Woodward, J. M. Kolesar, S. R. Hall, N.-A. Saleh, D. S. Jones, M.
G. Walter, J. Am. Chem. Soc. 2017, 139, 8467-8473; b) H. Oh, D. G. Seo,
T. Y. Yun, C. Y. Kim, H. C. Moon, ACS Appl. Mater. Interfaces. 2017, 9,
7658-7665.
[3] a) Y. Li, Y. Dong, X. Miao, Y. Ren, B. Zhang, P. Wang, Y. Yu, B. Li, L.
Isaacs, L. Cao, Angew. Chem. Int. Ed. 2018, 130, 737-741; b) M. C. Lipke,
T. Cheng, Y. Wu, H. Arslan, H. Xiao, M. R. Wasielewski, W. A. Goddard, J.
F. Stoddart, J. Am. Chem. Soc. 2017, 139, 3986-3998.
[17] a) G. He, L. Kang, W. Torres Delgado, O. Shynkaruk, M. J. Ferguson, R.
McDonald, E. Rivard, J. Am. Chem. Soc. 2013, 135, 5360-5363; b) G. He,
W. Torres Delgado, D. J. Schatz, C. Merten, A. Mohammadpour, L. Mayr,
M. J. Ferguson, R. McDonald, A. Brown, K. Shankar, E. Rivard, Angew.
Chem. Int. Ed. 2014, 53, 4587-4591; c) A. J. Tilley, C. Guo, M. B. Miltenburg,
T. B. Schon, H. Yan, Y. Li, D. S. Seferos, Adv. Funct. Mater. 2015, 25,
3321-3329; d) L. Xu, G. Li, T. Xu, W. Zhang, S. Zhang, S. Yin, Z. An, G.
He, Chem. Commun. 2018, 54, 9226-9229.
[4] J. Luo, B. Hu, C. Debruler, T. L. Liu, Angew. Chem. Int. Ed. 2018, 57, 231-
235.
[5] a) Q. V. Nguyen, P. Martin, D. Frath, M. L. Della Rocca, F. Lafolet, S.
Bellinck, P. Lafarge, J.-C. Lacroix, J. Am. Chem. Soc. 2018, 140, 10131-
10134; b) C. Sun, G. Xu, X.-M. Jiang, G.-E. Wang, P.-Y. Guo, M.-S. Wang,
G.-C. Guo, J. Am. Chem. Soc. 2018, 140, 2805-2811.
[6] Y. Wu, J. Zhou, B. T. Phelan, C. M. Mauck, J. F. Stoddart, R. M. Young, M.
R. Wasielewski, J. Am. Chem. Soc. 2017, 139, 14265-14276.
[7] a) S. Sathyamoorthi, M. Kanagaraj, M. Kathiresan, V. Suryanarayanan, D.
Velayutham, J. Mater. Chem. A 2016, 4, 4562-4569; b) L. Striepe, T.
Baumgartner, Chem. Eur. J. 2017, 23, 16924-16940.
[18] H. Zhao, J. Wang, Y. Zheng, J. Li, X. Han, G. He, Y. Du, Angew. Chem. Int.
Ed. 2017, 56, 15334-15338.
[19] G. Li, L. Xu, W. Zhang, K. Zhou, Y. Ding, F. Liu, X. He, G. He, Angew.
Chem. Int. Ed. 2018, 57, 4897-4901.
[8] a) N. Kang, J. H. Park, J. Choi, J. Jin, J. Chun, I. G. Jung, J. Jeong, J.-G.
Park, S. M. Lee, H. J. Kim, S. U. Son, Angew. Chem. Int. Ed. 2012, 51,
6626-6630; b) T. Gong, X. Lou, J.-J. Fang, E.-Q. Gao, B. Hu, Dalton Trans.
2016, 45, 19109-19116; c) M. Stolar, C. Reus, T. Baumgartner, Adv.
Energy Mater. 2016, 6, 1600944; d) A. B. Ikhe, N. Naveen, K.-S. Sohn, M.
Pyo, Electrochim. Acta 2018, 283, 393-400.
[20] M. Stolar, J. Borau-Garcia, M. Toonen, T. Baumgartner, J. Am. Chem. Soc.
2015, 137, 3366-3371.
[21] Q. Zhao, Z. Zhu, J. Chen, Adv. Mater. 2017, 29, 1607007.
[22] J. Wu, X. Rui, G. Long, W. Chen, Q. Yan, Q. Zhang, Angew. Chem. Int. Ed.
2015, 54, 7354-7358.
This article is protected by copyright. All rights reserved.