3
550
We have thus achieved the synthesis from a single chiral precursor of two diastereomeric Aspi-
dosperma alkaloid analogues that are antipodal at every centre except one, the original C-7 centre
of secologanin. If this asymmetric centre were eliminated (e.g. by dehydrogenation) then we would
have the prospect of readily controlled selective syntheses for both enantiomeric series. A further
possibility is the use of secologanin itself with the indolo-azepine and hence a route to novel hybrid
Aspidosperma–Corynanthé structures.
Acknowledgements
We thank the CVCP for an ORS Award and the University of Manchester for a Bursary (M.K.).
References
1. Herbert, R. B. In Monoterpenoid Indole Alkaloids; Saxton, J. E., Ed.; John Wiley: New York, 1983; Chapter 1 and
references cited therein.
2
3
4
. Kuehne, M. E.; Bohnert, J. C. J. Org. Chem. 1981, 46, 3443–3447 and references cited therein.
. Kuehne, M. E.; Podhorez, D. E. J. Org. Chem. 1985, 50, 924–929.
. (a) Brown, R. T. In Monoterpenoid Indole Alkaloids; Saxton, J. E., Ed.; John Wiley: New York, 1983; pp. 135–9, 192–4.
(
b) Brown, R. T.; Dauda, B. E. N.; Santos, C. A. M. Chem. Commun. 1991, 825–826.
. Kuehne, M. E.; Bohnert, J. C.; Bornmann, W. G.; Kirkemo, C. L.; Kuehne, S. E.; Seato, P. J.; Zebvitz, T. C. J. Org. Chem.
985, 50, 919–924.
. Hesse, M. Indolalkaloide in Tabellen; Springer-Verlag: Berlin, 1968; pp. 58–63.
5
1
6
7
1
. H NMR spectra (300 MHz, CDCl
3
) (numbering based on secologanin): 6 δ 9.68 (d, J=3 Hz, H-1), 7.62 (s, H-9), 4.14 (m,
J=12, 4.5, 1.5 Hz, H-5eq), 3.92 (m, J=12, 10.5, 4 Hz, H-5ax), 3.70 (s, OMe), 3.00 (m, J=1.5 Hz, H-7), 2.47 (m, J=3 Hz,
H-2), 1.9–1.7 (m, H
m, ar-H
2
-6, H-3
b
), 1.35 (m, H-3
a
), 0.93 (t, J=7 Hz, H
3
-4). 8 (major isomer) δ 8.63 (NH), 7.48 (s, H-9), 7.1–7.6
0
(
4
), 6.81 (s, H-1), 4.25 (dd, J=5, 2.5 Hz, H-3 ), 4.07 (m, H-5
a
), 3.79 (m, H-5
b
), 3.72 (s, OMe), 3.69 (s, OMe),
0
0
0
3
H
.5–3.7 (m, H
2
-7 ), 3.16 (m, J=10.5, 2.5 Hz, H-2
-6 ), 2.15 (m, H-3 ), 1.97 (m, H-6 ), 1.7–1.5 (m, H-6
), 4.28 (td, J=12, 4 Hz, H-5
a
), 2.97 (bd, J=2.5 Hz, H-7), 2.64 (m, J=10.5, 5 Hz, H-2
b
), 2.5–2.3 (m,
0
2
a
b
a
, H-3
b
), 1.00 (t, J=7 Hz, H
3
-4). 10 δ 8.95 (NH), 7.38 (d, J=2.5 Hz,
0
H-9), 6.9–7.2 (m, ar-H
4
a
), 4.00 (td, J=12, 12, 4 Hz, H-5
b
), 3.96 (ddd, J=12, 8, 2.5 Hz, H-7
a
),
0
0
a0
3
6
0
.81 (s, OMe), 3.59 (d, J=2.5 Hz, H-1), 3.48 (ddd, J=12, 11, 6 Hz, H-7
, 2.5 Hz, H-7), 2.16 (d, J=16 Hz, H-2 ), 1.9–2.1 (m, H-6 , H -6), 1.90 (ddd, J=12, 6, 2.5 Hz, H-6 ), 1.22 (m, H-3
b
), 2.70 (dd, J=16, 2.5 Hz, H-2
a
), 2.47 (ddd, J=10,
0
0
b
b
2
b
),
.97 (m, H-3
a
), 0.68 (t, J=7 Hz, H
3
-4). 11 δ 8.93 (NH), 7.70 (d, J=2.5 Hz, H-9), 6.9–7.2 (m, ar-H
4
), 4.67 (td, J=10.5, 2.5
0
Hz, H-7
H-7
a
), 4.36 (td, J=10.5, 2.5 Hz, H-5
), 2.85 (dt, J=9, 2.5 Hz, H-7), 2.46 (dd, J=16, 2.5 Hz, H-2
a
), 4.04 (d, J=1.5 Hz, H-1), 3.95 (m, H-5
b
), 3.75 (s, OMe), 3.16 (dm, J=10.5 Hz,
0
0
0
0
b
), 1.9–2.0 (m, H-6 , H
b
b
), 2.04 (d, J=16 Hz, H-2
a
2
-6), 1.90
0
(ddd, J=12, 6, 2.5 Hz, H-6
a
), 1.22 (m, H-3
b
), 0.97 (m, H-3
a
), 0.68 (t, J=7 Hz, H
3
-4).