C O M M U N I C A T I O N S
strated as a superior catalyst for the reduction of CCl4 to CH4, an
overall eight-electron reduction. The advantage over other catalysts
may lie within the protein structure itself, i.e., that the rigidity and
stability of the thermophilic protein traps the substrate within the
active pocket, facilitating multiple reductions of individual sub-
strates.
Acknowledgment. We are indebted to Professor Tom Poulos
and Jason Yano at University of California, Irvine for their
assistance in expression of the CYP119 used in this work. We also
thank Professor Don Blake for assistance with the GC analysis.
This research is supported by the National Science Foundation (PJF
CHE-0100774). E.B. acknowledges a graduate fellowship from the
UC TSR&TP.
Figure 3. Effect of temperature on catalytic dehalogenation of CCl4. (Top)
Linear sweep voltammograms of CYP119/DDAPSS in the presence of
saturated CCl4 at (a) 25 °C, (b) 55 °C, (c) 75 °C. (Bottom) Voltammogram
of CYP119/DDAPSS at 200 mV/s. (Right) Volume of methane produced
during electrocatalysis of CCl4 at 25 °C (× 10) and 55 °C after electrolysis
for 20 min at -1150 mV, average of three trials. Solid bars denote CYP119
catalysis, and striped are control experiments in absence of CYP119.
Supporting Information Available: Experimental details, including
characterizations of the protein-modified electrodes, temperature de-
pendence of the FeIII/II couple, methods of analysis of the products of
bulk electrolysis, control experiments, and a comparison of nitrite
reduction at elevated temperatures; seven pages. This material is
products resulting from bulk electrolysis identified sequentially
dechlorinated C1 products but gave no evidence of C2 products,
e.g., chloroethanes (S6, Supporting Information). The electron
turnover per protein at equivalent concentrations of substrate are
52.1 s-1 for CCl4, 27.5 s-1 for CHCl3, and 4.5 s-1 for CH2Cl2,
following the differences in electron affinity of the substrates.27
The catalytic waves occur close to the FeII/I couple, suggesting that
the FeI state is the active catalyst and that the reactions proceed
via an overall two-electron reduction process, eq 1.
References
(1) Chenier, Philip J. SurVey of Industrial Chemistry, 2nd revised ed.; Wiley-
VCH: New York, 1990; p xii.
(2) U.S. Department of Health, Education and Welfare. EnViron. Health
Perspect. 1977, 21, 1-130.
(3) Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.
(4) Environmental Protection Agency’s Class I Ozone-Depleting Substances,
(5) U.S. Environmental Protection Agency’s National Priorities List, 2 October
(6) Zhang, Z. C.; Beard, B. C. Appl. Catal. A 1998, 174, 33.
(7) Hashsham, S. A.; Scholze, R.; Freedman, D. L. EnViron. Sci. Technol.
1995, 29, 2856-2863.
(8) Krone, U. E.; Laufer, K.; Thaur, R. K. Biochemistry 1989, 28, 10061-
FeI + RCl + H+ f FeIII + RH + Cl-
(1)
10065.
(9) Gantzer, C. J.; Wackett, L. P. EnViron. Sci. Technol. 1991, 25, 715-722.
(10) Li, S.; Wackett, L. P. Biochemistry 1993, 32, 9355-9361.
(11) Walsh, M. E.; Kkyritsis, P.; Eady, N. A. J.; Hill, H. A. O.; Wong, L.-L.
Eur. J. Biol. 2000, 267, 5815-5820.
Catalytic electrolysis of CH2Cl2 in D2O yielded signals attribut-
able to CD3H and CD2H2 by MS analysis, suggesting that complete
dechlorination was achievable (S6, Supporting Information). We
therefore investigated the effect of increasing temperature on the
catalytic reduction of CCl4 using GC-FID analysis. Varying the
temperature from 25 °C to 55 °C increased the maximum catalytic
current observed in linear scan voltammograms, from 0.51 to 1.14
mA; likewise, the onset of the catalytic current shifted positively,
as seen in Figure 3. The observed changes in catalytic current
include kinetic enhancement as well as increased diffusion and
substrate solubility at the elevated temperature. But most impres-
sively, a 35-fold increase in methane production is seen in the
headgas, from 1.65 µL at 25 °C to 55.00 µL at 55 °C over a 20
min electrolysis at -1.15 V vs Ag/AgCl, Figure 3. In combination
with the lack of C2 products, this dramatic increase in multiple
dehalogenations suggests that the substrate is constrained within
the redox active heme pocket during electrocatalytic turnover.
We have recently reported similarly dramatic differences in the
electrocatalytic reduction of nitrite by myoglobin and CYP119.22
Within the first 30 min of catalysis, myoglobin produces mainly
nitrous oxide with less than 20% conversion to ammonia; within
the same period, CYP119 catalysis produces almost quantitative
ammonia. The reduction of nitrite to ammonia requires an overall
six-electron reduction of each substrate. CYP119 is here demon-
(12) Hu, Y.; Hu, N.; Zeng, Y. Talanta 2000, 50, 1183-1195.
(13) Ma, H.; Hu, N. Anal. Lett. 2001, 34, 339-361.
(14) Rusling, J. F.; Nassar, Alaa-Eldin F. J. Am. Chem. Soc. 1993, 115, 11891-
11897.
(15) Zhang, Z.; Nassar, A.-E.; Lu, Z.; Schenkman, J. B.; Rusling, J. F. J. Chem.
Soc., Faraday Trans. 1997, 93, 1769-1774.
(16) Wirtz, M.; Klucik, J.; Rivera, M. J. Am. Chem. Soc. 2000, 122, 1047-
1056.
(17) Park, S.; Yamane, K.; Adachi, S.; Shiro, Y.; Weiss, K. E.; Sligar, S. G.
Acta Crystallogr. 2000, D56, 1173-1175.
(18) Yano, J. K.; Koo, L. S.; Schuller, D. J.; Li, H.; Ortiz de Montellano, P.
R.; Poulos, T. L. J. Biol. Chem. 2000, 275, 31086-31092.
(19) Koo, L. S.; Tschirret-Guth, R. A.; Straub, W. E.; Moenne-Loccoz, P.;
Loehr, T. M.; Ortiz de Montellano, P. R. J. Biol. Chem. 2000, 275 (19),
14112-14123.
(20) Koo, L. S.; Immoos, C. E.; Cohen, M. S.; Farmer, P. J.; de Montellano,
P. R. O. J. Am. Chem. Soc. 2002, 124, 5684-5691.
(21) Puchkaev, A. V.; Wakagi, T.; Ortiz de Montellano, P. R. J. Am. Chem.
Soc. Comm. 2002, 124, 12682-12683.
(22) Immos, C. E.; Chou, J.; Bayachou, M.; Blair, E.; Greaves, J.; Farmer, P.
J. J. Am. Chem. Soc. 2004, 126, 4934-4942.
(23) Iwuoha, E. I.; Kane, S.; Ania, C. O.; Smyth, M. R.; Ortiz de Montellano,
P. R.; Fuhr, U. Electroanalysis 2000, 12, 980-986.
(24) Nakashima, N.; Yamaguchi, Y.; Eda, H.; Kunitake, M.; Manabe, O. J.
Phys Chem. B 1997, 101, 215-220.
(25) Wang, H.; Blair, D. F.; Ellis, W. R.; Gray, H. B.; Chan, S. I. Biochemistry
1986, 25, 167-171.
(26) Smith, E. T. Anal. Biochem. 1995, 224, 180-186.
(27) Luke, B. T.; Loew, G. H.; McLean, A. D. J. Am. Chem. Soc. 1988, 110,
3396-3400.
JA0488333
9
J. AM. CHEM. SOC. VOL. 126, NO. 28, 2004 8633