10.1002/anie.201913635
Angewandte Chemie International Edition
RESEARCH ARTICLE
and CH4 products require larger barriers of 1.26 and 0.78 eV,
respectively, and thus have lower yield.
metallic metal clusters for extensively catalytic applications and
thus they will open an avenue for a new type of metal catalysts
with high efficiency for a series of challenging chemical reactions.
Based on the DFT calculations, the three gold clusters
possess different binding capabilities with intermediate species
governed by their electronic structures, which in turn determine
the reaction pathway and product selectivity of CO2
hydrogenation. As revealed by Figure 6d, Au9(P(CH3)3)4,
Au11(P(CH3)3)6 and Au36(SCH3)14 exhibit high selectivity for CH4,
C2H5OH and HCOOH with the limited kinetic barriers of 0.49, 0.60
and 0.51 eV, respectively. The product selectivity and emerging
intermediates during the reaction agree well with our experimental
results.
Acknowledgements
We acknowledge financial supports from National Natural
Science Foundation of China (21773109, 91845104
).
Keywords: cluster • non-metallic • gold • CO2 • selectivity
[1]
T. Higaki, Q. Li, M. Zhou, S. Zhao, Y. W. Li, S. Li, R. C. Jin, Acc. Chem.
Res. 2018, 51, 2764-2773.
[2]
[3]
[4]
[5]
I. Chakraborty, T. Pradeep, Chem. Rev. 2017, 117, 8208-8271.
Z. B. Gan, N. Xia, Z. K. Wu, Acc. Chem. Res. 2018, 51, 2774-2783.
X. Kang, M. Z. Zhu, Coordin. Chem. Rev. 2019, 394, 1-38.
A. Ghosh, O. F. Mohammed, O. M. Bakr, Acc. Chem. Res. 2018, 51,
3094-3103.
[6]
[7]
[8]
[9]
Z. Lei, J. J. Li, X. K. Wan, W. H. Zhang, Q. M. Wang, Angew. Chem. Int.
Ed. 2018, 57, 8639-8643.
M. Zhou, C. J. Zeng, Y. X. Chen, S. Zhao, M. Y. Sfeir, M. Z. Zhu, R. C.
Jin, Nat. Commun. 2016, 7, 13240.
C. J. Zeng, Y. X. Chen, K. Kirschbaum, K. Appavoo, M. Y. Sfeir, R. C. Jin,
Sci. Adv. 2015, 1, e1500045.
P. X. Liu, R. X. Qin, G. Fu, N. F. Zheng, J. Am. Chem. Soc. 2017, 139,
2122-2131.
[10] G. Li, R. C. Jin, J. Am. Chem. Soc. 2014, 136, 11347-11354.
[11] X. K. Wan, J. Q. Wang, Z. A. Nan, Q. M. Wang, Sci. Adv. 2017, 3,
e1701823.
[12] R. R. Nasaruddin, T. K. Chen, N. Yan, J. P. Xie, Coordin. Chem. Rev.
2018, 368, 60-79.
[13] W. Choi, G. X. Hu, K. Kwak, M. Kim, D. E. Jiang, J. P. Choi, D. Lee, ACS
Appl. Mater. Inter. 2018, 10, 44645-44653.
[14] C. Liu, H. Abroshan, C. Y. Yan, G. Li, M. Haruta, ACS Catal. 2016, 6, 92-
99.
[15] D. R. Kauffman, J. Thakkar, R. Siva, C. Matranga, P. R. Ohodnicki, C. J.
Zeng, R. C. Jin, ACS Appl. Mater. Inter. 2015, 7, 15626-15632.
[16] Y. Y. Liu. X. Q. Chai, X. Cai, M. Y. Chen, R. C. Jin, W. P. Ding, Y. Zhu,
Angew. Chem. Int. Ed. 2018, 57, 9775-9779.
Figure 7. Energy diagrams of CO2 hydrogenation on Au9(P(CH3)3)4,
Au11(P(CH3)3)6 and Au36(SCH3)14 clusters by DFT calculations. Kinetic barriers
for each elementary step are presented, and the limiting barriers for various
products are highlighted. The insets show the atomic structures of reaction
intermediates during the formation of CH4, C2H5OH and HCOOH for
Au9(P(CH3)3)4, Au11(P(CH3)3)6 and Au36(SCH3)14, respectively. The H, C, O, P,
S and Au atoms are shown in white, grey, red, green, magenta and yellow colors,
respectively.
[17] X. Cai, G. Saranya, K. Shen, M. Y. Chen, R. Si, W. P. Ding, Y. Zhu, Angew.
Chem. Int. Ed. 2019, 58, 9964-9968.
[18] H. Zhang, H. Liu, Z. Q. Tian, D. Lu, Y. Yu, S. Cestellos-Blanco, K. K.
Sakimoto, P. D. Yang, Nat. Nanotech. 2018, 13, 900-905.
[19] Q. G. Liu, X. F. Yang, L. Li, S. Miao, Y. Li, Y. Q. Li, X. K. Wang, Y. Q.
Huang, T. Zhang, Nat. Commun. 2017, 8,1407.
[20] J. J. Wang, G. N. Li, Z. L. Li, C. Z. Tang, Z. C. Feng, H. Y. An, H. L. Liu,
T. F. Liu, C. Li, Sci. Adv. 2017, 3, e1701290.
[21] J. Graciani, K. Mudiyanselage, F. Xu, A. E. Baber, J. Evans, S. D.
Senanayake, D. J. Stacchiola, P. Liu, J. Hrbek, J. F. Sanz, J. A. Rodriguez,
Science 2014, 345, 546-550.
Conclusion
Our results explicitly indicate that the non-metallic gold
clusters, Au9, Au11 and Au36, exhibit atomicity-dependent catalytic
performances in the hydrogenation processes of CO2, where they
can selectively determine the reaction pathways towards C1 or C2
products. Specially, Au11 can give >80% selectivity for ethanol as
high-added value chemicals and Au36 can achieve >85%
selectivity for formic acid. In contrast, the activity of the non-
metallic gold clusters are 10-70 times higher than that of metallic
nanoparticles. DFT calculations reveal the molecular-level
mechanisms of CO2 reaction with H2 over the three clusters,
which are governed by their distinct binding capabilities and
electronic structures. The exceptional properties of the non-
metallic gold clusters highlight the importance of pursuing non-
[22] D. Preti, C. Resta, S. Squarcialupi, G. Fachinetti, Angew. Chem. Int. Ed.
2011, 50, 12551-12554.
[23] B. An, J. Z. Zhang, K. Cheng, P. F. Ji, C. Wang, W. B. Lin, J. Am. Chem.
Soc. 2017, 139, 3834-3840.
[24] Z. H. He, M. Cui, Q. L. Qian, J. J. Zhang, H. Z. Liu, B. X. Han, Proc. Natl.
Acad. Sci. 2019, 116, 12654-12659.
[25] C. S. Yang, S. H. Liu, Y. N. Wang, J. M. Song, G. H. Wang, S. Wang, Z.
J. Zhao, R. T. Mu, J. L. Gong, Angew. Chem. Int. Ed. 2019, 58, 1-6.
[26] C. T. Wang, E. Guan, L. Wang, X. F. Chu, Z. Y. Wu, J. Zhang, Z. Y. Yang,
Y. W. Jiang, L. Zhang, X. J. Meng, B. C. Gates, F. S. Xiao, J. Am. Chem.
Soc. 2019, 141, 8482-8488.
[27] S. Kattel, W. T. Yu, X. F. Yang, B. H. Yan, A. Q. Huang, W. M. Wan, P.
Liu, J. G. Chen, Angew. Chem. Int. Ed. 2016, 55, 7968 -7973.
This article is protected by copyright. All rights reserved.