10.1002/anie.202011836
Angewandte Chemie International Edition
RESEARCH ARTICLE
A. H. Ip, H. Tan, L.-J. Chen, S.-H. Yu, S. O. Kelley, D. Sinton, E. H.
Sargent, Nat. Catal. 2018, 1, 946–951; b) Y. Pang, J. Li, Z. Wang, C.-S.
Tan, P.-L. Hsieh, T.-T. Zhuang, Z.-Q. Liang, C. Zou, X. Wang, P. De
Luna, J. P. Edwards, Y. Xu, F. Li, C.-T. Dinh, M. Zhong, Y. Lou, D. Wu,
L.-J. Chen, E. H. Sargent, D. Sinton, Nat. Catal. 2019, 2, 251–258; c)
W. Luc, X. Fu, J. Shi, J.-J. Lv, M. Jouny, B. H. Ko, Y. Xu, Q. Tu, X. Hu,
J. Wu, Q. Yue, Y. Liu, F. Jiao, Y. Kang, Nat. Catal. 2019, 2, 423–430.
R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J.
Am. Chem. Soc. 2014, 136, 6978–6986.
CORR, comparable to the performance of the current state-of-
the-art CO reduction catalysts. The exceptional performances of
Cu NCs are attributed to both the larger population of low-
coordinated atoms and the lower free energy for C−C coupling.
The comparison between CO and CO2 reduction clearly
demonstrates the potential advantages of CO electrolysis to
produce valuable C2+ chemicals. The outstanding stability can
be explained by the strong Cu−C coordination and confinement
effects from the GDY support. Last but not least, the acetylenic-
bond-directed site-trapping strategy paves the way to synthesize
other transition metal-based nanoclusters, representing a step
forward to large scale application of metal NCs for renewable
energy storage.
[3]
[4]
[5]
I. Merino-Garcia, J. Albo, A. Irabien, Nanotechnology 2018, 29, 014001.
S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch,
B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F.
Jaramillo, I. Chorkendorff, Chem. Rev. 2019, 119, 7610–7672.
D. Gao, R. M. Arán-Ais, H. S. Jeon, B. Roldan Cuenya, Nat. Catal.
2019, 2, 198–210.
[6]
[7]
[8]
X. Liu, D. Astruc, Coord. Chem. Rev. 2018, 359, 112–126.
a) C. Liu, H. He, P. Zapol, L. A. Curtiss, Phys. Chem. Chem. Phys.
2014, 16, 26584–26599; b) Y. F. Bu, M. Zhao, G. X. Zhang, X. Zhang,
W. Gao, Q. Jiang, ChemElectroChem 2019, 6, 1831–1837; c) X. Bai, Q.
Li, L. Shi, X. Niu, C. Ling, J. Wang, Small 2020, 16, e1901981.
a) Q. Tang, Y. Lee, D. Y. Li, W. Choi, C. W. Liu, D. Lee, D. E. Jiang, J.
Am. Chem. Soc. 2017, 139, 9728–9736; b) Q. Hu, Z. Han, X. Wang, G.
Li, Z. Wang, X. Huang, H. Yang, X. Ren, Q. Zhang, J. Liu, C. He,
Angew. Chem. Int. Ed. 10.1002/anie.202009277.
Experimental Section
Materials: THF was freshly distilled from sodium
benzophenone ketyl under Ar and stored over sodium. Cuprous
iodide (CuI) and Tetrabutylammonium fluoride (TBAF, 1.0 M in
THF) were purchased from Sigma Aldrich. The water used was
purified with a Millipore system (typically 18.2 MΩ cm resistivity).
Gas diffusion layers (GDL) were purchased from Fuel Cell Store
with Sigracet 29 BC model. IrO2-coating titanium sheet as the
counter electrode was purchased from Baoji Zhiming Special
Metal Co., LTD. Hexakis[(trimethylsilyl)ethynyl]benzene and
GDY were synthesized according to the reported methods.[11]
Synthesis of catalysts Cu/GDY: The catalysts were
synthesized under a dry and oxygen-free argon atmosphere by
[9]
[10] H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, L. Mao, J. Am. Chem.
Soc. 2015, 137, 5260–5263.
[11] G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Chem. Commun. 2010, 46,
3256–3258.
[12] a) R. Sakamoto, N. Fukui, H. Maeda, R. Matsuoka, R. Toyoda, H.
Nishihara, Adv. Mater. 2019, 31, e1804211; b) C. Huang, Y. Li, N.
Wang, Y. Xue, Z. Zuo, H. Liu, Y. Li, Chem. Rev. 2018, 118, 7744–7803.
[13] a) Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li,
Nat. Commun. 2018, 9, 1460; b) H. Yu, Y. Xue, B. Huang, L. Hui, C.
Zhang, Y. Fang, Y. Liu, Y. Zhao, Y. Li, H. Liu, Y. Li, iScience 2019, 11,
31–41; c) Y. Gao, Z. Cai, X. Wu, Z. Lv, P. Wu, C. Cai, ACS Catal. 2018,
8, 10364–10374; d) X. P. Yin, H. J. Wang, S. F. Tang, X. L. Lu, M. Shu,
R. Si, T. B. Lu, Angew. Chem. 2018, 130, 9526–9530; Angew. Chem.
Int. Ed. 2018, 57, 9382–9386.
using
the
Schlenk
technique.
To
a
solution
of
hexakis[(trimethylsilyl)ethynyl]benzene (43.6 mg, 0.066 mmol) in
dry THF (15 ml) was added dropwise 0.4 mL of TBAF (1.0 M in
o
THF, 0.4 mmol) and stirred at –78 C for 30 min. The solution
was transferred to a suspension of cuprous iodide (75 mg for
Cu45.2/GDY; 3.3 mg for Cu6.0/GDY; 0.8 mg for Cu1.5/GDY) in THF.
The mixture was allowed to warm to room temperature with a
violent stirring and then heated at 60 oC for 7 days. The
precipitate was separated by centrifugation, washed by acetone,
ethanol and water, and dried in vacuum overnight to yield the
corresponding catalysts as brown to black powders.
[14] Y. Xue, J. Li, Z. Xue, Y. Li, H. Liu, D. Li, W. Yang, Y. Li, ACS Appl.
Mater. Interfaces 2016, 8, 31083–31091.
[15] a) Y. Lu, W. Wei, W. Chen, Chin. Sci. Bull. 2012, 57, 41–47; b) C. Lu, R.
Fang, X. Chen, Adv. Mater. 2020, 32, e1906548.
[16] D. Ma, Z. Zeng, L. Liu, X. Huang, Y. Jia, J. Phys. Chem. C 2019, 123,
19066–19076.
[17] W. Ju, A. Bagger, G. P. Hao, A. S. Varela, I. Sinev, V. Bon, B. Roldan
Cuenya, S. Kaskel, J. Rossmeisl, P. Strasser, Nat. Commun. 2017, 8,
944.
[18] J. Li, L. Zhong, L. Tong, Y. Yu, Q. Liu, S. Zhang, C. Yin, L. Qiao, S. Li,
R. Si, J. Zhang, Adv. Funct. Mater. 2019, 29, 1905423.
Acknowledgements
[19] a) H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu, C. He, J. Am.
Chem. Soc. 2019, 141, 12717–12723; b) F. Huang, Y. Deng, Y. Chen,
X. Cai, M. Peng, Z. Jia, J. Xie, D. Xiao, X. Wen, N. Wang, Z. Jiang, H.
Liu, D. Ma, Nat. Commun. 2019, 10, 4431; c) Y. Qu, Z. Li, W. Chen, Y.
Lin, T. Yuan, Z. Yang, C. Zhao, J. Wang, C. Zhao, X. Wang, F. Zhou, Z.
Zhuang, Y. Wu, Y. Li, Nat. Catal. 2018, 1, 781–786.
This work is supported by the National Natural Science
Foundation of China (21771098, 21903016), the Science and
Technology Innovation Commission of Shenzhen Municipality
(JCYJ20170817111548026), Shenzhen Clean Energy Research
Institute (No. CERI-KY-2019-003) and the Shenzhen Nobel
Prize Scientists Laboratory Project (C17783101) and
Guangdong Provincial Key Laboratory of Energy Materials for
Electric Power (2018B030322001).
[20] M. Jouny, G. S. Hutchings, F. Jiao, Nat. Catal. 2019, 2, 1062–1070.
[21] M. Jouny, W. Luc, F. Jiao, Nat. Catal. 2018, 1, 748–755.
[22] L. Han, W. Zhou, C. Xiang, ACS Energy Lett. 2018, 3, 855–860.
[23] T. Cheng, H. Xiao, W. A. Goddard, 3rd, Proc. Natl. Acad. Sci. U S A
2017, 114, 1795–1800.
[24] a) D. Kim, C. S. Kley, Y. Li, P. Yang, Proc. Natl. Acad. Sci. U S A 2017,
114, 10560–10565; b) Y.-G. Kim, A. Javier, J. H. Baricuatro, M. P.
Soriaga, Electrocatalysis 2016, 7, 391–399; c) Y.-G. Kim, A. Javier, J.
H. Baricuatro, D. Torelli, K. D. Cummins, C. F. Tsang, J. C. Hemminger,
M. P. Soriaga, J. Electroanal. Chem. 2016, 780, 290–295; d) Y. Li, F.
Cui, M. B. Ross, D. Kim, Y. Sun, P. Yang, Nano Lett. 2017, 17, 1312–
1317; e) P. Grosse, D. Gao, F. Scholten, I. Sinev, H. Mistry, B. Roldan
Cuenya, Angew. Chem. 2018, 130, 6300–6305; Angew. Chem. Int. Ed.
2018, 57, 6192–6197; f) D. Karapinar, N. T. Huan, N. Ranjbar Sahraie,
Keywords: size effect • CO2/CO electroreduction • Cu
nanoclusters • single atoms • graphdiyne
[1]
[2]
M. B. Ross, P. De Luna, Y. Li, C.-T. Dinh, D. Kim, P. Yang, E. H.
Sargent, Nat. Catal. 2019, 2, 648–658.
a) T.-T. Zhuang, Y. Pang, Z.-Q. Liang, Z. Wang, Y. Li, C.-S. Tan, J. Li,
C. T. Dinh, P. De Luna, P.-L. Hsieh, T. Burdyny, H.-H. Li, M. Liu, Y.
Wang, F. Li, A. Proppe, A. Johnston, D.-H. Nam, Z.-Y. Wu, Y.-R. Zheng,
6
This article is protected by copyright. All rights reserved.