Journal of the American Chemical Society
ARTICLE
PBE calculations. This material is available free of charge via the
Internet at http://pubs.acs.org.
’
AUTHOR INFORMATION
Corresponding Author
’
ACKNOWLEDGMENT
This work was performed under the auspices of the U.S.
Department of Energy under Contract DE-AC02-06CH11357.
Use of computational resources at Argonne National Laboratory
Computing Resource Center is gratefully acknowledged.
Figure 7. First-principles calculations of the reaction pathway from
CO and hydrogen to formate on the anatase (101) surface. Important
2
bond lengths (Å) and angles (degrees) are marked in all geometries with
atom colors showing Ti in gray, O in red, C in blue, and H in white. The
species along the reaction pathway are labeled at the bottom, where “g”
denotes gas phase and “a” denotes adsorbed species on the anatase (101)
’ REFERENCES
(1) Inoue, T.; Fujishima, S.; Konishi, S.; Honda, K. Nature 1979, 277, 637.
(2) Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul,
P. Ind. Eng. Chem. Res. 2006, 45, 2558.
3) Kitano, M.; Matsuoka, M.; Ueshima, M.; Anpo, M. Appl. Catal., A:
Gen. 2007, 325, 1.
2
surface; A1 is a linear vertical adsorption configuration of CO on the
(
surface. The “þ” sign indicates non-interacting species, while “...”
indicates two species in proximity.
(4) Centi, G.; Perathoner, S. Catal. Today 2009, 148, 191.
(
5) (a) Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. J. Electro-
two-electron, one-proton transfer from the TiO substrate. The
2
anal. Chem. 1995, 396, 21. (b) Anpo, M.; Takeuchi, T. J. Catal. 2003,
16, 505. (c) Anpo, M.; Thomas, J. M. Chem. Commun. 2006, 3273.
6) Chen, L.; Graham, M. E.; Li, G.; Gentner, D. R.; Dimitrijevic,
N. M.; Gray, K. A. Thin Solid Films 2009, 517, 5641.
7) Nguyen, T. V.; Wu, J. C. S.; Chiou, C. H. Catal. Commun. 2008,
9, 2073.
(8) Ozcan, O.; Yukruk, F.; Akkaya, E. U.; Uner, D. Top. Catal. 2007,
44, 523.
transition state (TS) for this process in Figure 7 is represented by
2
-
CO2 (one electron transferred already) strongly bound to the
(
five-fold Ti site with a Ti-O distance of 2.05 Å and bent
(
—OCO ∼140ꢀ) toward a proton adsorbed on the surface,
(
forming a hydrogen bond 2.1 Å in length. The effective barrier for
the formation of formate via a two-electron, one-proton process
is calculated to be 0.82 eV, a value lower than the activation
(
9) Woolerton, T. W.; Sheard, S.; Reisner, E.; Pirece, E.; Ragsdale,
energy for one-electron transfer to CO alone. The relatively
2
S. W.; Armstrong, F. A. J. Am. Chem. Soc. 2010, 132, 2132.
(
7, 37.
(
high activation barrier of 0.82 eV would account for the relatively
low efficiency determined experimentally at room temperature,
together with the complex nature of the processes on the surface
10) Tseng, I. H.; Chang, W. C.; Wu, J. C. S. Appl. Catal., B 2002,
3
11) Wu, J. C. S. Catal. Surv. Asia 2009, 13, 30.
12) Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C. J. Phys.
of TiO , considered here only for water and carbonates.
2
(
Chem. Lett. 2010, 1, 48.
13) Kaneco, S.; Shimizu, Y.; Ohta, K.; Mizuno, T. J. Photochem.
Photobiol. A 1998, 115, 223.
14) Tseng, I. H.; Chang, W. C.; Wu, J. C. S. Appl. Catal. B: Environ.
002, 37, 37.
15) Belapurkar, A. D.; Kishore, K. J. Photochem. Photobiol. A 2004,
63, 503.
’
CONCLUSION
(
Water, both dissociated on the surface of TiO and in
2
(
subsequent molecular layers, has a three-fold role: (i) stabilization
of charges (preventing electron-hole recombination), (ii) as an
electron donor (reaction of water with photogenerated holes to
give OH radicals), and (iii) as an electron acceptor (formation of H
atoms in a reaction of photogenerated electrons with protons on
the surface, -OH ). Dissolved CO in the form of carbonates/
bicarbonates competes with water for photogenerated holes and
thus can act as a hole scavenger. CO3 radicals are relatively strong
one-electron oxidation agents. Finally, observation of such reaction
intermediates as H atoms, OCH radicals, and CH radicals, and
first-principles calculations, suggest a concerted two-electron, one-
proton transfer to adsorbed carbon dioxide molecules, demonstrat-
ing the importance of hydrogen/water management on the
photocatalyst surface.
2
(
1
(
(
16) Dey, G. R.; Pushpa, K. K. Res. Chem. Intermed. 2007, 33, 631.
17) (a) Duonghong, D.; Ramsden, J. M.; Gratzel, M. J. Am. Chem.
þ
2
2
Soc. 1982, 104, 2977. (b) Dimitrijevic, N. M.; Savic, D.; Micic, O. I.;
Nozik, A. J. J. Phys. Chem. 1984, 88, 4278.
(18) Centi, G.; Perathoner, S.; Wine, G.; Gangeria, M. Green Chem.
2007, 9, 671 and references cited therein.
(19) Lunsford, J. H.; Jayne, J. P. J. Phys. Chem. 1965, 69, 2182.
-
•
•
3
3
(
20) (a) Tanaka, T.; Kohno, Y.; S. Yoshida, S. Res. Chem. Intermed.
000, 26, 93. (b) Teramura, K.; Tanaka, T.; Ishikawa, H.; Kohno, Y.;
Funabiki, T. J. Phys. Chem. B 2004, 108, 346.
21) (a) Chiesa, M.; Giamello, E. Chem.—Eur. J. 2007, 13, 1261. (b)
Preda, G.; Pacchioni, G.; Chiesa, M.; Giamello, E. J. Phys. Chem. C 2008,
12, 19568.
2
(
1
’
ASSOCIATED CONTENT
(22) J. Rasko, J.; Solymosi, F. J. Phys. Chem. 1994, 98, 7147.
(
23) Yoneyama, H. Catal. Today 1997, 39, 169.
S
Supporting Information. Determination of quantum
b
(24) Hemminger, J. C.; Carr, R.; Somorjai, G. A. Chem. Phys. Lett.
1978, 57, 100.
yield for CH formation; evolution of EPR spectra with time of
4
illumination and CO concentration, together with EPR spectra
of reference samples (blank experiments), for both direct and
spin-trap EPR measurements; electron density distribution from
(25) Green, J.; Carter, E.; Murphy, D. M. Chem. Phys. Lett. 2009,
477, 340.
(26) Henderson, M A. Langmuir 1996, 12, 5093.
2
3
970
dx.doi.org/10.1021/ja108791u |J. Am. Chem. Soc. 2011, 133, 3964–3971