Page 5 of 6
ACS Catalysis
determining deprotonation is then followed by a consecutive
1
2
3
4
5
6
7
8
9
number of proton shifts until the last carbon of the conjugated
system. The “base-walking” stops when the most
thermodynamically stable product is formed. Thus, a simple
base enables the isomerization reaction, which cannot be
accomplished with transition-metal catalysts due to formation
of stable coordination complexes. To the best of our knowledge,
this is the first example of a proton being transferred alongside
a polyenylic hydrocarbon chain via iterative proton shifts.
(
Double-Bond Migration) Procedure for Allyl Acetals and Allyl Ethers
Mediated by Nickel Complexes. Synthesis 1998, 305308. (b)
Mereyala, H. B.; Gurrala, S. R.; Mohan, S. K. Study of Metal and Acid
Catalysed Deprotection of Propargyl Ethers of Alcohols via their
Allenyl Ethers. Tetrahedron 1999, 55, 1133111342. (c) Taskinen, E.
Thermodynamic, Spectroscopic, and Density Functional Theory
Studies of Allyl Aryl and Prop-1-Enyl Aryl Ethers. Part 1.
Thermodynamic Data of Isomerization. J. Chem. Soc., Perkin Trans.
2001, 2, 18241834. (d) Reid, J. P.; McAdam, C. A.; Johnston, A. J.
S.; Grayson, M. N.; Goodman, J. M.; Cook, M. J. J. Org. Chem. 2015,
80, 1472−1498.
AUTHOR INFORMATION
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(4) (a) Ahlsten, N.; Martín-Matute, B. Ir-Catalysed Formation of
*
Author Contributions
These authors contributed equally to this work.
C−F Bonds. From Allylic Alcohols to α-Fluoroketones. Chem.
Commun. 2011, 47, 8331−8333. (b) Ahlsten, N.; Bermejo Gómez, A.;
Martín-Matute, B. Iridium‐Catalyzed 1,3‐Hydrogen Shift/Chlorination
of Allylic Alcohols. Angew. Chem., Int. Ed. 2013, 52, 6273−6276. (c)
Gomez, A. B.; Erbing, E.; Batuecas, M.; Vázquez-Romero, A.; Martín-
⊥
NOTES
The authors declare no competing financial interest.
Matute, B. Iridium‐Catalyzed Isomerization/Bromination of Allylic
Alcohols: Synthesis of α‐Bromocarbonyl Compounds. Chem. - Eur. J.
ASSOCIATED CONTENT
Supporting Information
2
014, 20, 10703−10709. (d) Vázquez-Romero, A.; Bermejo Gómez,
A.; Martín-Matute, B. An Acid- and Iridium-Catalyzed Tandem 1,3-
Transposition / 3,1-Hydrogen Shift / Chlorination of Allylic Alcohols.
ACS Catalysis 2015, 5, 708714. (e) Martinez-Erro, S., Bermejo
Gómez, A.; Vázquez-Romero, A.; Erbing, E.; Martín-Matute, B. 2,2-
Diiododimedone: a Mild Electrophilic Iodinating Agent for The
Selective Synthesis of α-Iodoketones from Allylic Alcohols. Chem.
Commun. 2017, 53, 98429845. (f) Sanz-Marco, A.; Mozina, S.;
Martinez-Erro, S.; Iskra, J. Martín-Matute, B. Synthesis of -
iodoketones from Allylic Alcohols through Aerobic Oxidative
Iodination. Adv. Synth. Catal. 2018, 360, 38843888. (g) Sanz-Marco,
A.; Martinez-Erro, S.; Martín-Matute, B. Selective Synthesis of
Unsymmetrical Aliphatic Acyloins through Oxidation of Iridium
Enolates. Chem. Eur. J. 2018, 45, 1156411567.
(5) (a) Clark, W. M.; Tickner-Eldridge, A. M.; Huang, G. K.;
Pridgen, L. N.; Olsen, M. A.; Mills, R. J.; Lantos, I.; Baine, N. H. A
Catalytic Enantioselective Synthesis of the Endothelin Receptor
Antagonists SB-209670 and SB-217242.
Stereospecific Formal 1,3-Hydrogen Transfer of
Arylindenol. J. Am. Chem. Soc. 1998, 120, 45504551. (b) Johnston,
A. J. S.; McLaughlin, M. G.; Reid, J. P.; Cook, M. NaH mediated
isomerisation–allylation reaction of 1,3-substituted propenols. J. Org.
Biomol. Chem. 2013, 11, 76627666. (c) Zheng, H.-X.; Xiao, Z.-F.;
Yao, C.-Z.; Li, Q.-Q.; Ning, X.-S.; Kang, Y.-B.; Tang, Y. Transition-
Metal-Free Self-Hydrogen-Transferring Allylic Isomerization. Org.
Lett. 2015, 17, 61026105. (d) Mondal, K.; Mondal, B.; Pan, S. C.
Organocatalytic Redox Isomerization of Electron-Deficient Allylic
Alcohols: Synthesis of 1,4-Ketoaldehydes. J. Org. Chem. 2016, 81,
The Supporting Information is available free of charge on the ACS
Publications website. Experimental details, spectroscopy data and
computational details (PDF).
ACKNOWLEDGMENT
We are grateful for support from the Swedish Research Council
through Vetenskapsrådet and Formas, the Knut and Alice
Wallenberg Foundation, and the Göran Gustafsson Foundation.
This project was also funded by the European Union’s Horizon
2020 research and innovation programme under grant agreement
No 721223. We thank Alexander Röther for preliminary
experiments and IZO-SGI SGIker of UPV/EHU for human and
technical support.
A
Base-Catalyzed
Chiral 3-
a
REFERENCES
(1) (a) Colquhoun, H. M.; Holton, J.; Thompson, D. J.; Twigg, M.
V. New Pathways for Organic Synthesis—Practical Applications of
Transition Metals, Plenum Press, London, 1984, pp. 173–193. (b)
Trost, B. M. Atom Economy—A Challenge for Organic Synthesis:
Homogeneous Catalysis Leads the Way. Angew. Chem. Int. Ed. Engl.
4
8354848. (e) Suchand, B.; Satyanarayana, G. KOtBu‐Mediated
1
995, 34, 259281. (c) Trost, B. M. On Inventing Reactions for Atom
Economy. Acc. Chem. Res. 2002, 35, 695705.
2) (a) Damico, R.; Logan, T. Isomerization of Unsaturated Alcohols
Domino Isomerization and Functionalization of Aromatic Allylic
Alcohols. Eur. J. Org. Chem. 2017, 38863895. (f) Hamada, Y.;
Kawasaki-Takasuka, T.; Yamazaki, T. Base-promoted isomerization
of CF3-containing allylic alcohols to the corresponding saturated
ketones under metal-free conditions. Beilstein J. Org. Chem. 2017, 13,
(
with Iron Pentacarbonyl. Preparation of Ketones and Aldehydes. J.
Org. Chem. 1967, 32, 2356–2358. (b) Uma, R.; Crevisy, C.; Grée, R.
Transposition of Allylic Alcohols into Carbonyl Compounds Mediated
by Transition Metal Complexes. Chem. Rev. 2003, 103, 27 −52. (c)
Cadierno, V.; Crochet, P.; Gimeno, J. Ruthenium-Catalyzed
Isomerizations of Allylic and Propargylic Alcohols in Aqueous and
Organic Media: Applications in Synthesis. Synlett 2008, 1105−1124.
15071512. (g) Zheng, H.-X.; Yao, C.-Z.; Qu, J. -P.; Kang, Y. -B.
n
4
Bu NOTf-promoted radical self-hydrogen transferring isomerization
under transition metal-free conditions. Org. Chem. Front. 2018, 5,
12131216. (h) Liu, Y.; Liu, S.; Li, D.; Zhang, N.; Peng, L.; Ao, J.;
Song, C. E.; Lan, Y.; Yan, H. Kinetic Resolution of Allylic Alcohol
with Chiral BINOL-Based Alkoxides: A Combination of Experimental
and Theoretical Studies. J. Am. Chem. Soc. 2019, 141, 2, 11501159.
(6) Martinez-Erro, S.; Sanz-Marco, A.; Bermejo-Gómez, A.;
Vázquez-Romero, A.; Ahlquist, M.; Martín-Matute, B. Base-Catalyzed
Stereospecific Isomerization of Electron-Deficient Allylic Alcohols
and Ethers through Ion-Pairing. J. Am. Chem. Soc. 2016, 138,
(d) Ahlsten, N.; Bartoszewicz, A.; Martín-Matute, B.
Allylic Alcohols as Synthetic Enolate Equivalents: Isomerisation and
Tandem Reactions Catalysed by Transition Metal Complexes. Dalton
Trans. 2012, 41, 1660 −1670. (e) Lorenzo-Luis, P.; Romerosa, A.;
Serrano-Ruiz, M. Catalytic Isomerization of Allylic Alcohols in Water.
ACS Catal. 2012, 2, 1079−1086.
(3) For examples of the isomerization of allyl ethers, see: (a) Wille,
A.; Tomm, S.; Frauenrath, H. A Highly Z-Selective Isomerization
5
ACS Paragon Plus Environment