1012
J . Org. Chem. 2002, 67, 1012-1015
Sch em e 1
Regioch em istr y of th e P h otostim u la ted
Rea ction of th e P h th a lim id e An ion w ith
1-Iod oa d a m a n ta n e a n d ter t-Bu tylm er cu r y
Ch lor id e by th e SRN1 Mech a n ism
Manuel Bajo Maquieira, Alicia B. Pen˜e´n˜ory,* and
Roberto A. Rossi*
the ET does not occur spontaneously, it can be induced
by light or by FeBr2 in DMSO.
The alkyl halides that react by the SRN1 mechanism
are those that have a relatively low reactivity toward
polar nucleophilic substitution.1c,f For instance, 1-halo-
INFIQC, Departamento de Quı´mica Orga´nica, Facultad de
Ciencias Quı´micas, Universidad Nacional de Co´rdoba,
Ciudad Universitaria, 5000 Co´rdoba, Argentina
penenory@dqo.fcq.unc.edu.ar
Received J uly 26, 2001
adamantanes as well as other bridgehead halides react
3a
with Ph2P-,3 Ph2As-,
and Me3Sn- 4 ions. Also, the
reaction of 1-iodoadamantane (1-IAd) with carbanions,5
PhS-,6,7 PhSe-,6 and PhTe- 6 ions has been reported.
It is known that N-centered nucleophiles react with
different substrates to give N-substitution or C-substitu-
tion and both N- and C-substitution. Thus, the photoin-
duced reaction of the anion of 2-aminonaphthalene with
iodobenzene affords mainly 1-phenyl-2-aminonaphtha-
lene (47%) and N-phenyl-2-aminonaphthalene (1%). How-
ever, with 1-iodonaphthalene only C-substitution is
observed.8 Several anions derived from nitrogen hetero-
cycles react with aryl radicals on carbon. With the anion
of pyrrole, only substitution at the carbon center is
observed, the 2-position being more reactive than the
3-position.9 For example, in the reaction of 4-chloropyr-
idine with pyrrole anion induced by electrodes, 2-(4-
pyridyl) pyrrole (60%) and 3-(4-pyridyl) pyrrole (3%) were
obtained and no N-substitution is observed.9 In contrast,
it was found that alkyl substrates with EWG yield
N-substitution products after reaction with N-centered
nucleophiles derived from azoles,10 nitroimidazoles,11
pyrimidine,12 purine,13 etc. There is only one example in
the literature of the reaction of an alkyl substrate without
EWG with nitrogen nucleophiles in which tert-butyl-
Abstr a ct: The photostimulated reaction of the phthalimide
anion (1) with 1-iodoadamantane (2) gave 3-(1-adamantyl)
phthalimide (3) (12%) and 4-(1-adamantyl) phthalimide (4)
(45%), together with the reduction product adamantane
(AdH) (21%). The lack of reaction in the dark and inhibition
of the photoinduced reaction by p-dinitrobenzene, 1,4-
cyclohexadiene, and di-tert-butylnitroxide indicated that 1
reacts with 2 by an SRN1 mechanism. Formation of products
3 and 4 occurs with distonic radical anions as intermediates.
The photoinduced reaction of anion 1 with tert-butylmercury
chloride (10) affords 4-tert-butylphthalimide (11) as a unique
product. By competition experiments toward 1, 1-iodoada-
mantane was found to be ca. 10 times more reactive than
tert-butylmercury chloride.
The radical nucleophilic substitution, or SRN1, is an
excellent means of effecting the nucleophilic substitution
of different types of aromatic and aliphatic substrates
with electron-withdrawing groups (EWG) possessing
suitable leaving groups. Also, it has been reported that
aliphatic substrates without EWG groups such as the
cycloalkyl, bicycloalkyl, and neopentyl halides react by
this mechanism.1 This SRN1 reaction involves radicals and
radical anions as intermediates and proceeds by a chain
mechanism, whose propagation steps are outlined in
Scheme 1.
In aliphatic systems without a π* MO that stabilizes
the radical anion (RX)-•, this is not an intermediate, and
eqs 1 and 3 occur simultaneously (dissociative electron
transfer) (eq 1,3).2 However, this chain process requires
an initiation step, that is, the generation of the radical
(R•) or the radical anion (RX)-• intermediates.1 In a few
systems, spontaneous electron transfer (ET) from the
nucleophile to the substrate has been observed. When
(3) (a) Rossi, R. A.; Palacios, S. M.; Santiago, A. N. J . Org. Chem.
1982, 47, 4654-4657. (b) Bornancini, E. R. N.; Alonso, R. A.; Rossi, R.
A. J . Org. Chem. 1987, 52, 2166-2170. (c) Santiago, A. N.; Morris, D.
G.; Rossi, R. A. J . Chem. Soc., Chem. Commun. 1988, 220-221. (d)
Santiago, A. N.; Takeuchi, K.; Ohga, Y.; Nishida, M.; Rossi, R. A. J .
Org. Chem. 1991, 56, 1581-1584. (e) Santiago, A. N.; Iyer, V. S.;
Adcock, W.; Rossi, R. A. J . Org. Chem. 1988, 53, 3016-3020. (f).
Lukach, A. E.; Morris, D. G.; Santiago, A. N.; Rossi, R. A. J . Org. Chem.
1995, 60, 1000-1004.
(4) (a) Adcock, W.; Gangodawila, H. J . Org. Chem. 1989, 54, 6040-
6047. (b) Ashby, E. C.; Sun, X.; Duff, J . L. J . Org. Chem. 1994, 59,
1270-1278. (c) Adcock, W.; Clark, C. I. J . Org. Chem. 1995, 60, 723-
724.
(5) (a) Borosky, G. L.; Pierini, A. B.; Rossi, R. A. J . Org. Chem. 1990,
55, 3705-3707. (b) Rossi, R. A.; Pierini, A. B.; Borosky, G. L. J . Chem.
Soc., Perkin Trans. 2 1994, 2577-2581.
(6) Palacios, S. M.; Alonso, R. A.; Rossi, R. A. Tetrahedron 1985,
41, 4147-4156.
* Fax: 54-351-4333030. Phone: 54-351-4334170/73.
(1) For reviews on SRN1, see: (a) Rossi, R. A.; de Rossi, R. H.
Aromatic Substitution by the SRN1 Mechanism; ACS Monograph 178;
American Chemical Society: Washington, DC, 1983. (b) Bowman, W.
R. Chem. Soc. Rev. 1988, 17, 283-316. (c) Rossi, R. A.; Pierini, A. B.;
Palacios, S. M. Adv. Free Rad. Chem. 1990, 193-252. (d) Save´ant, J .
M. Adv. Phys. Org. Chem. 1990, 26, 1-130. (e) Norris, R. K. In
Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: 1991;
Vol. 4, p 451. (f) Rossi, R. A.; Pierini, A. B.; Pen˜e´n˜ory, A. B. In The
Chemistry of Functional Groups; Patai, S., Rappoport, Z., Eds.; Wiley:
Chichester, 1995; Supl. D2, Chapter 24, pp 1395-1485. (g) Rossi, R.
A.; Pierini, A. B.; Santiago, A. N. In Organic Reactions; Paquette, L.
A., Bittman, R., Eds.; J ohn Wiley & Sons, Inc.: New York, 1999; Vol.
54, pp 1-271.
(7) Ahbala, M.; Hapiot, P. K.; Houmam, A.; J ouini, M.; Pinson, J .;
Save´ant, J . M. J . Am. Chem. Soc. 1995, 117, 11488-11498.
(8) Pierini, A. B.; Baumgartner, M. T.; Rossi, R. A. Tetrahedron Lett.
1987, 28, 4653-4656.
(9) Chahma, M.; Combellas, C.; Thiebault, A. Synthesis-Stuttgart
1994, 366-368.
(10) Beugelmans, R.; Lechevalier, A.; Kiffer, D.; Maillos, P. Tetra-
hedron Lett. 1986, 27, 6209-6212.
(11) Benhida, R.; Charbaoui, T.; Lechevallier, A.; Beugelmans, R.
Bull. Soc. Chim. Fr. 1994, 131, 200-209.
(12) Benhida, R.; Gharbaoui, T.; Lechevallier, A.; Beugelmans, R.
Nucleosides & Nucleotides 1994, 13, 1169-1177.
(2) Save´ant, J . M. Adv. Electron-Transfer Chem. 1994, 4, 53-116
and references therein.
(13) Gharbaoui, T.; Benhida, R.; Lechevallier, A.; Maillos, P.;
Beugelmans, R. Nucleosides & Nucleotides 1994, 13, 1161-1168.
10.1021/jo010756w CCC: $22.00 © 2002 American Chemical Society
Published on Web 01/09/2002