Page 7 of 8
ACS Catalysis
(22) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008,
108, 3351–3378.
(23) Li, G.; Jiang, D.; Kumar, S.; Chen, Y.; Jin, R. ACS Catal.
2014, 4, 2463−2469.
(24) Cano, I.; Chapman, A. M.; Urakawa, A.; van Leeuwen, P. J.
Am. Chem. Soc. 2014, 136, 2520−2528.
(25) Yan, M.; Jin, T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen,
L.; Bao, M.; Asao, N.; Chen, M.; Yamamoto, Y. J. Am. Chem. Soc.
2012, 134, 17536−17542.
alcohol is observed. ESIꢀMS, UVꢀvis, and DFT results indiꢀ
1
2
3
4
5
6
cate that one ligand removal is the key step to activate gold
clusters toward reactants. The protecting functionalized ligand,
diphenylꢀ2ꢀpyridylphosphine, plays a crucial role in the cataꢀ
lytic hydrogenation. In all, this study gives a cue to design and
develop better and environmentally friendly nanogold catalyꢀ
sis for use in the chemical industry.
7
8
9
(26) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,
H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fuꢀ
kuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliꢀ
aro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Danꢀ
nenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J.
B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford
CT, 2009.
(27) Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.
(28) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
(29) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;
Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46,
6671–6687.
(30) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270–283.
(31) Assadollahzadeh, B.; Schwerdtfeger, P. J. Chem. Phys. 2009,
131, 064306.
(32) Lyalin, A.; Taketsugu, T. J. Phys. Chem. Lett. 2010, 1, 1752–
1757.
(33) Faza, O. N.; Rodríguez, R. Á.; López, C. S. Theor. Chem.
Acc. 2011, 128, 647–661.
(34) Zubarev, D. Y.; Boldyrev, A. I. J. Phys. Chem. A 2009, 113,
866–868.
(35) Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.;
Curtiss, L. A. J. Comp. Chem. 2001, 22, 976–984.
(36) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Deꢀ
Frees, D. J.; Pople, J. A.; Gordon, M. S. J. Chem. Phys., 1982, 77,
3654–3665.
(37) Fuentealba, P.; Preuss, H.; Stoll, H.; Szentpály, L. V. Chem.
Phys. Lett. 1982, 89, 418– 422.
(38) IgelꢀMann, G.; Stoll, H.; Preuss, H. Mol. Phys. 1988, 65,
1321–1328.
(39) Scalmani, G.; Frisch, M. J. J. Chem. Phys. 2010, 132, 114110.
(40) McKenzie, L. C.; Zaikova, T. O.; Hutchison, J. J. Am. Chem.
Soc. 2014, 136, 13426–13435.
(41) Gutrath, B. S.; Englert, U.; Wang, Y.; Simon, U. Eur. J. Inꢀ
org. Chem. 2013, 12, 2002–2006.
(42) Lin, J.; Li, W.; Liu, C.; Huang, P.; Zhu, M.; Ge, Q.; Li, G.
Nanoscale 2015, 7, 13663–13670.
(43) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.;
Whitehouse, C. M. Science 1989, 246, 64–71.
(44) Wu, Z.; Jiang, D.; Mann, A. K. P.; Mullins, D. R.; Qiao, Z.;
Allard, L. F.; Zeng, C.; Jin, R.; Overbury, S. H. J. Am. Chem. Soc.
2014, 136, 6111–6122.
(45) Elliott, III, E. W.; Glover, R. D.; Hutchison, J. E. ACS Nano
2015, 9, 3050–3059.
(46) Yoskamtorn, T.; Yamazoe, S.; Takahata, Y.; Nishigaki, J.;
Thivasasith, A.; Limtrakul, J.; Tsukuda, T. ACS Catal. 2014, 4, 3696–
3700.
(47) LopezꢀAcevedo, O.; Kacprzak, K. A.; Akola, J.; Häkkinen,
H. Nature Chem. 2010, 2, 329–334.
■ ASSOCIATED CONTENT
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Supporting Information. The experimental and simulated isoꢀ
topic distribution patterns of species [Au11(PPh2Py)7Br3Cs1]+,
[Au11(PPh2Py)7Br3Cs2]2+, and [Au11(PPh3)6Cl3Cs]2+, recovery and
reuse of the Au11(PPh2Py)7Br3/CeO2 catalyst, and FTꢀIR spectra
of Au11(PPh2Py)7Br3/CeO2 catalyst before and after the thermal
treatment. This material is available free of charge via the Internet
■
AUTHOR INFORMATION
Corresponding Author
*Email: gaoli@dicp.ac.cn
Notes
The authors declare no competing financial interest.
■ ACKNOWLEDGMENT
G.L. acknowledges financial support by the starting funds of the
Dalian Institute of Chemical Physics and the “Thousand Youth
Talents Plan”.
■
REFERENCES
(1) Yau, S.; Varnavski, O.; T. Goodson, III, Acc. Chem. Res. 2013,
46, 1506–1516.
(2) Lu, Y.; Chen, W. Chem. Soc. Rev. 2012, 41, 3594–3623.
(3) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K.
Acc. Chem. Res. 2001, 34, 181–190.
(4) Schmid, G.; Bäumle, M.; Geerkens, M.; Heim, I.; Osemann,
C.; Sawitowski, T. Chem. Soc. Rev. 1999, 28, 179–185.
(5) Häkkinen, H. Nature Chem. 2012, 4, 443–455.
(6) Jin, R. Nanoscale 2010, 2, 343–362.
(7) Shenhar, R.; Norsten, T. B.; Rotello, V. M. Adv. Mater. 2005,
17, 657–669.
(8) Vignolle, J.; Tilley, T. D. Chem. Commun. 2009, 46, 7230–
7232.
(9) Aslam, M.; Fu, L.; Su, M.; Vijayamohanan, K.; Dravid, V. P.
J. Mater. Chem. 2004, 14, 1795–1797.
(10) Maity, P.; Tsunoyama, H.; Yamauchi, M.; Xie, S.; Tsukuda,
T. J. Am. Chem. Soc. 2011, 133, 20123–20125.
(11) Li, G.; Jin, R. J. Am. Chem. Soc. 2014, 136, 11347–11354.
(12) Wan, X.; Yuan, S.; Lin, Z.; Wang, Q. Angew. Chem. Int. Ed.
2014, 53, 2923–2926.
(13) Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N. K.; Kaꢀ
waguchi, H.; Tsukuda, T. J. Phys. Chem. C 2007, 111, 7845–7847.
(14) Mathew, A.; Natarajan, G.; Lehtovaara, L.; Hakkinen, H.;
Kumar, R. M.; Subramanian, V.; Jaleel, A.; Pradeep, T. ACS Nano
2014, 8, 139–152.
(15) Kawasaki, H.; Kumar, S.; Li, G.; Zeng, C.; Kauffman, D.;
Yoshimoto, J.; Iwasaki, Y.; Jin, R. Chem. Mater. 2014, 26, 2777–
2788.
(16) Chen, L.; Wang, C.; Yuan, Z.; Chang, H. Anal. Chem. 2015,
87, 216–229.
(17) Taketoshi, A.; Haruta, M. Chem. Lett. 2014, 43, 380–387.
(18) Li, G.; Jin, R. Acc. Chem. Res. 2013, 46, 1749–1758.
(19) Yamazoe, S.; Koyasu, K.; Tsukuda, T. Acc. Chem. Res. 2014,
47, 816–824.
(20) Li, G.; Zeng, C.; Jin, R. J. Am. Chem. Soc. 2014, 136, 3673–
3679.
(48) Carrettin, S.; Guzman, J.; Corma, A. Angew. Chem. Int. Ed.
2005, 44, 2242–2245.
(49) Zhou, Z.; Liu, M.; Wu, X.; Yu, H.; Xu, G.; Xie, Y. Appl. Orꢀ
ganometal. Chem. 2013, 27, 562–569.
(21) Li, G.; Jiang, D.; Liu, C.; Yu, C.; Jin, R. J. Catal. 2013, 306,
177–183.
ACS Paragon Plus Environment