4
Tetrahedron Letters
14. Francioli, C.; Wang, X.; Parapanov, R.; Abdelnour, E.; Lugrin, J.;
Scheme 4. Synthesis of N-alkyl piperidines containing
Gronchi, F.; Perentes, J.; Eckert, P.; Ris, H.-B.; Piquilloud, L.
PLoS One 2017, 12, e0173916.
dithiocarbamates with quinuclidine salts
15. Bala, V.; Gupta, G.; L Sharma, V. Chemical and Medicinal
Versatility of Dithiocarbamates: An Overview. Mini Rev. Med.
Chem. 2014, 14, 1021–1032.
Conclusion
16. Halimehjani, A. Z.; Hooshmand, S. E.; Shamiri, E. V.
Tetrahedron Lett. 2014, 55, 5454–5457.
17. Gettys, K. E.; Ye, Z.; Dai, M. Recent Advances in Piperazine
Synthesis. Synthesis (Stuttg). 2017, 49 (12), 2589–2604.
18. Boursalian, G. B.; Ham, W. S.; Mazzotti, A. R.; Ritter, T. Nat.
Chem. 2016, 8, 810.
19. Halimehjani, A. Z.; Hooshmand, S. E.; Shamiri, E. V. RSC Adv.
2015, 5, 21772–21777.
20. Ye, S.; Wang, H.; Wu, J. ACS Comb. Sci. 2011, 13, 120–125.
21. Zhu, Q.; Yuan, Q.; Chen, M.; Guo, M.; Huang, H. Angew. Chemie
2017, 129, 5183–5187.
22. Bugaenko, D. I.; Yurovskaya, M. A.; Karchava, A. V. J. Org.
Chem. 2017, 82, 2136–2149.
23. Ross, S. P.; Hoye, T. R. Org. Lett. 2018, 20, 100–103.
24. Halimehjani, A. Z.; Badali, E. RSC Adv. 2019, 9, 36386–36409.
25. Zhu, Q.; Chen, M.; Hu, J.; Yang, L. Chem. Asian J. 2018, 13,
1124–1128.
26. Maraš, N.; Polanc, S.; Kočevar, M. Org. Biomol. Chem. 2012, 10,
1300–1310.
27. Ziyaei Halimehjani, A.; Lotfi Nosood, Y. Org. Lett. 2017, 19,
6748–6751.
In the light of the medicinal properties of piperazine and also
dithiocarbamate motifs, we introduce an initiative procedure to
synthesize piperazines containing dithiocarbamate derivatives via
carbon-nitrogen bond cleavage of DABCO. With this direct and
practical synthetic pathway, a library of piperazines and
piperidines containing dithiocarbamates were easily obtained by
the reaction of a diversified number of quaternized derivatives of
DABCO and quinuclidine accompanied by various
dithiocarbamate salts. Joyfully, despite most of the carbon-
nitrogen bond cleavage reports, our novel desired products were
achieved in the absence of any catalyst, additive, and metals. A
great deal of benefits can be derived from catalyst-free reactions,
take decreasing chemical pollutions and improving the E-factor
as critical parameters in an environmentally benign organic
reaction, for instance.33 Furthermore, metal-free organic
transformations are particularly interesting to the pharmaceutical
industry as they overcome the problem of toxic metal
contaminants being present in the final products. Finally, we
anticipate that these synthetic strategies come up with a solution
to a certain number of barriers to drug design and total synthesis.
28. Halimehjani, A. Z.; Shokrgozar, S.; Beier, P. J. Org. Chem. 2018,
83, 5778–5783.
29. Schlüter, T.; Ziyaei Halimehjani, A.; Wachtendorf, D.;
Schmidtmann, M.; Martens, J. ACS Comb. Sci. 2016, 18, 456–460.
30. Lu, H.-Y.; Barve, I. J.; Selvaraju, M.; Sun, C.-M. ACS Comb. Sci.
2019, 22, 42–48.
Acknowledgment
31. Ho, T.-L. Chem. Rev. 1975, 75, 1–20.
32. Rafin, C.; Veignie, E.; Sancholle, M.; Postel, D.; Len, C.; Villa,
P.; Ronco, G. J. Agric. Food Chem. 2000, 48, 5283–5287.
33. Sheldon, R. A. Green Chem. 2017, 19, 18–43.
We are grateful to the Faculty of Chemistry of Kharazmi
University for supporting this work.
References and notes
Declaration of interests
1.
2.
Ganem, B. Acc. Chem. Res. 2009, 42 (3), 463–472
Clark
e, P.
A.;
Santo
s, S.;
Marti
n, W.
H. C.
Gree
n
Che
m.
2007,
9,
☐ The authors declare that they have no
known competing financial interests or
personal relationships that could have
appeared to influence the work reported in this
paper.
438–440
3.
4.
Brauch, S.; Gabriel, L.; Westermann, B. Chem. Commun. 2010,
46, 3387–3389.
El Kaim, L.; Gizolme, M.; Grimaud, L.; Oble, J. Org. Lett. 2006,
8, 4019–4021.
Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75.
Maity, P.; Shacklady-McAtee, D. M.; Yap, G. P. A.; Sirianni, E.
R.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 280–285.
Wang, Y.-C.; Xie, Y.-Y.; Qu, H.-E.; Wang, H.-S.; Pan, Y.-M.;
Huang, F.-P. J. Org. Chem. 2014, 79, 4463–4469.
Liang, X.; Patel, H.; Young, J.; Shah, P.; Raglione, T. J. Pharm.
Biomed. Anal. 2008, 47, 723–730.
5.
6.
7.
8.
9.
☐The authors declare the following financial
interests/personal relationships which may be
considered as potential competing interests:
Cabrele, C.; Reiser, O. J. Org. Chem. 2016, 81, 10109–10125.
10. Shaquiquzzaman, M.; Verma, G.; Marella, A.; Akhter, M.;
Akhtar, W.; Khan, M. F.; Tasneem, S.; Alam, M. M. Eur. J. Med.
Chem. 2015, 102, 487–529.
11. Reilly, S. W.; Mach, R. H. Org. Lett. 2016, 18, 5272–5275.
12. Das, J.; Chen, P.; Norris, D.; Padmanabha, R.; Lin, J.; Moquin, R.
V; Shen, Z.; Cook, L. S.; Doweyko, A. M.; Pitt, S.; Pang, S.;
Shen, D. R.; Fang, Q.; de Fex, H. F.; McIntyre, K. W.; Shuster, D.
J.; Gillooly, K. M.; Behnia, K.; Schieven, G. L.; Wityak, J.;
Barrish, J. C. J. Med. Chem. 2006, 49, 6819–6832.
13. Wei, M.-X.; Zhang, J.; Ma, F.-L.; Li, M.; Yu, J.-Y.; Luo, W.; Li,
X.-Q. Eur. J. Med. Chem. 2018, 155, 165–170.
Graphical Abstract