Page 5 of 6
Journal of the American Chemical Society
unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc.
2014, 136, 5508-5519.
(22) a) Singh, A.; Kuksenok, O.; Johnson, J. A.; Balazs, A. C. Tai-
loring the structure of polymer networks with iniferter-mediated photo-
growth. Polym. Chem. 2016, 76, 2955-2964. b) McKenzie, T. G.; Fu,
Q.; Wong, E. H. H.; Dunstan, D. E.; Qiao, G. G. Visible light mediated
controlled radical polymerization in the absence of exogenous radical
sources or catalysts. Macromolecules 2015, 48, 3864-3872. c) Shanmu-
gam, S.; Cuthbert, J.; Flum, J.; Fantin, M.; Boyer, C.; Kowalewski, T.;
Matyjaszewski, K. Transformation of gels via catalyst-free selective
RAFT photoactivation. Polym. Chem. 2019, 10, 2477-2483.
(23) We observed a background reaction that gives similar results to
the HAT-RAFT process in the absence of dioxane (DCE used as a sol-
vent) or photocatalyst for MMA and BMA. This is likely due to direct
excitation of the disulfide and resultant CTA through an iniferter pro-
cess, see Ref. 5,6, 21.
1
2
3
4
5
6
7
8
(8) Dadashi-Silab, S.; Doran, S.; Yagci, Y. Photoinduced electron
transfer reactions for macromolecular syntheses. Chem. Rev. 2016,
116, 10212-10275.
(9) Corrigan, N.; Yeow, J.; Judzewitsch, P.; Xu, J.; Boyer, C. Seeing
the light: Advancing materials chemistry through photopolymerization.
Angew. Chem. Int. Ed. 2019, 58, 5170-5189.
(10) a) Chen, M.; Zhong, M.; Johnson, J. A. Light-Controlled Radi-
cal Polymerization: Mechanisms, Methods, and Applications. Chem.
Rev. 2016, 116, 10167. b) Zhang, Z.; Corrigan, N.; Bagheri, A.; Jin, J.;
Boyer, C. A versatile 3D and 4D printing system through photocon-
trolled RAFT polymerization. Angew. Chem. Int. Ed. 2019, 58, 17954-
17963.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) Williamson, J. B.; Czaplyski, W. L.; Alexanian, E. J.; Leibfarth,
F. A. Regioselective C–H xanthylation as a platform for polyolefin
functionalization. Angew. Chem. Int. Ed. 2018, 57, 6261-6265.
(12) Tasdelen, M. A.; Moszner, N.; Yagci, Y. The use of poly(eth-
ylene oxide) as hydrogen donor in type II photoinitiated free radical
polymerization. Polym. Bull. 2009, 63, 173-183.
(13) Ko, J. H.; Maynard, H. D. A guide to maximizing the therapeu-
tic potential of protein–polymer conjugates by rational design. Chem.
Soc. Rev. 2018, 47, 8998-9014.
(14) Williamson, J. B.; Lewis, S.E.; Johnson III, R. R.; Manning,
M.; Leibfarth, F. A. C–H functionalization of commodity polymers.
Angew. Chem. Int. Ed. 2019, 58, 8654-8668.
(15) Capaldo, L.; Ravelli, D. Hydrogen atom transfer (HAT): A ver-
satile strategy for substrate activation in photocatalyzed organic syn-
thesis. Eur. J. Org. Chem. 2017, 2056-2071.
(16) Shen, Y.; Gu, Y.; Martin, R. sp3 C−H Arylation and alkylation
enabled by the synergy of triplet excited ketones and nickel catalysts.
J. Am. Chem. Soc. 2018, 140, 12200-12209.
(17) Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis.
Chem. Rev. 2016, 116, 10075-10166.
(18) Yagci, Y.; Jockusch, S.; Turro, N. J. Photoinitiated polymeri-
zation: Advances, challenges, and opportunities. Macromolecules
2010, 43, 6245-6260.
(19) Block, H.; Ledwith, A.; Taylor, A. R. Polymerization of methyl
methacrylate photosensitized by benzophenones. Polymer 1971, 12,
271-288.
(20) Sandner, M. R.; Osborn, C. L.; Trecker, D. J. Benzophenone/tri-
ethylamine‐photoinitiated polymerization of methyl acrylate. J. Polym.
Sci. Part A-1: Polym. Chem. 1972, 10, 3173-3181.
(24) Bortolamei, N.; Isse, A. A.; Gennaro, A. Estimation of standard
reduction potentials of alkyl radicals involved in atom transfer radical
polymerization. Electrochimica Acta 2010, 55, 8312-8318.
(25) See supporting information for more details on the proposed
mechanism.
(26) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. O–H Hydro-
gen bonding promotes H-atom transfer from a C–H bonds for C-alkyl-
ation of alcohols. Science 2015, 349, 1532-1536.
(27) Perry, I. B.; Brewer, T. F.; Sarver, P. J.; Schultz, D. M.; Di-
Rocco, D. A.; MacMillan, D. W. C. Direct arylation of strong aliphatic
C–H bonds. Nature 2018, 560, 70-75.
(28) Ackerman, L. K. G.; Martinez Alvarado, J. I.; Doyle, A. G. Di-
rect C–C bond formation from alkanes using Ni-photoredox catalysis.
J. Am. Chem. Soc. 2018, 140, 14059-14063.
(29) Vleeschouwer, F. D.; Speybroeck, V. V.; Waroquier, M.; Geer-
lings, P.; De Proft, F. Electrophilicity and Nucleophilicity Index for
Radicals. Org. Lett. 2007, 9, 2721-2724.
(30) We conducted experiments on macro-CTAs to test for branch-
ing in the polymer backbone and observed no considerable polymeri-
zation suggesting that abstraction from the backbone is not a major
pathway. See supporting information for more details.
(31) Benzyl alcohol chain ends are identified by 1H NMR; see sup-
porting information for more details.
(32) Williamson, J. B.; Na, C. G.; Johnson III, R. R.; Alexanian, E.
J.; Leibfarth, F. A. Chemo- and regioselective functionalization of iso-
tactic polypropylene: A mechanistic and structure–property study. J.
Am. Chem. Soc. 2019, 141, 12815-12823.
(33) See supporting information Figures S47 and S50 for GPC chro-
matograms.
(21) Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom ab-
straction reactions: concepts and applications in organic chemistry.
Chem. Soc. Rev. 1999, 28, 25-35.
ACS Paragon Plus Environment