Organic Letters
Full experimental data (PDF)
AUTHOR INFORMATION
Letter
(13) Zeng, K.; Hwang, H.-M.; Dong, S.; Shi, X.; Wilson, K.; Green, J.;
Jiao, Y.; Yu, H. Environ. Toxicol. Chem. 2004, 23, 1400.
(14) The reaction under blue LED (455 nm) also worked, but in
lower conversion than under 400 nm irradiation.
■
(15) Although other heterocycles were studied in the reaction, the
scope is limited to furane and thiophene derivatives.
(16) (a) Rosokha, S. V.; Kochi, J. K. Acc. Chem. Res. 2008, 41, 641.
Corresponding Author
ORCID
́
́
(b) Arceo, E.; Jurberg, I. D.; Alvarez-Fernandez, A.; Melchiorre, P. Nat.
Chem. 2013, 5, 750.
̈
(17) In the case of 1C and 1K this complex is able to absorb at 455
nm irradiation. However, in the case of 1F, the complex shows little
absorption at 455 nm vs 400 nm, explaining the better conversion
observed with 400 nm LED irradiation.
Notes
The authors declare no competing financial interest.
(18) MacCarthy, P. Anal. Chem. 1978, 50, 2165.
(19) Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71,
2703.
(20) The reaction was carried out with DBU and K2CO3 under the
optimized reaction conditions (entry 12, Table 1).
(21) To probe the radical character of the reaction, we ran the
reaction of 1A with 2a in the standard reaction conditions, adding 10
equiv of TEMPO after 1 h of irradiation, and irradiating for an
additional 20 h. Compound 3Aa was obtained with a 26% yield, which
means that the reaction was suppressed by the addition of TEMPO,
confirming the radical character of the reaction.
ACKNOWLEDGMENTS
■
This work was supported by the Deutsche Forschungsgemein-
schaft DFG GRK 1626, Chemical Photocatalysis. L.M. thanks
the Alexander von Humboldt Foundation for a postdoctoral
fellowship. S.W. thanks the China Scholarship Council (CSC)
for a predoctoral fellowship. We thank Dr. Rudolf Vasold
(University of Regensburg) for his assistance in GC−MS
measurements and Ms. Regina Hoheisel (University of
Regensburg) for her assistance in cyclic voltammetry measure-
ments.
REFERENCES
■
(1) Travis, A. S. Manufacture and Uses of the Anilines: A Vast Array
of Processes and Products. In Patai’s Chemistry of Functional Groups;
Rappoport, Z., Ed.; John Wiley & Sons, Ltd.: Chichester, U.K., 2009.
(2) (a) Bao, X.; Yao, W.; Zhu, Q.; Xu, Y. Eur. J. Org. Chem. 2014,
2014, 7443. (b) Akula, M.; Yogeeswari, P.; Sriram, D.; Jha, M.;
Bhattacharya, A. RSC Adv. 2016, 6, 46073. (c) Monti, F.; Baschieri, A.;
Matteucci, E.; Mazzanti, A.; Sambri, L.; Barbieri, A.; Armaroli, N.
Faraday Discuss. 2015, 185, 233. (d) Piątek, P.; Słomiany, N. Synlett
2006, 13, 2027.
(3) (a) Izgu, E. C.; Hoye, T. R. Tetrahedron Lett. 2012, 53, 4938.
(b) Junk, L.; Kazmaier, U. Synlett 2016, 27, 1531.
(4) Nelson, T. D.; Crouch, R. D. Cu, Ni, and Pd Mediated
Homocoupling Reactions in Biaryl Syntheses: The Ullmann Reaction.
In Organic Reactions; Denmark, S. E., Ed.; John Wiley & Sons: 2004;
pp 265−555.
(5) (a) Pirali, T.; Zhang, F.; Miller, A. H.; Head, J. L.; McAusland, D.;
Greaney, M. F. Angew. Chem., Int. Ed. 2012, 51, 1006. (b) Holden, C.
M.; Sohel, S. M. A.; Greaney, M. F. Angew. Chem., Int. Ed. 2016, 55,
2450.
(6) (a) Wetzel, A.; Ehrhardt, V.; Heinrich, M. R. Angew. Chem., Int.
Ed. 2008, 47, 9130. (b) Jasch, H.; Scheumann, J.; Heinrich, M. R. J.
Org. Chem. 2012, 77, 10699. For methods that do not require the use
of a stoichiometric oxidant or reductant, see: (c) Pratsch, G.;
Wallaschkowski, T.; Heinrich, M. R. Chem. - Eur. J. 2012, 18, 11555.
(d) Hofmann, J.; Jasch, H.; Heinrich, M. R. J. Org. Chem. 2014, 79,
2314. (e) Hofmann, J.; Gans, E.; Clark, T.; Heinrich, M. R. Chem. -
Eur. J. 2017, 23, 9647.
(7) Jiang, T.; Chen, S.-Y.; Zhang, G.-Y.; Zeng, R.-S.; Zou, J.-P. Org.
Biomol. Chem. 2014, 12, 6922.
(8) Ghosh, I.; Konig, B. Angew. Chem., Int. Ed. 2016, 55, 7676.
̈
(9) Marzo, L.; Ghosh, I.; Esteban, F.; Konig, B. ACS Catal. 2016, 6,
6780.
̈
(10) Although competition between hydrogen abstraction and radical
addition can be expected for compounds 3Ag and 3Ah, we did not
observe any product formation coming from the hydrogen abstraction
process. For HAT processes, see: (a) Huang, X.; Groves, J. T. ACS
Catal. 2016, 6, 751. (b) Hu, X.-Q.; Chen, J.-R.; Xiao, W.-J. Angew.
Chem., Int. Ed. 2017, 56, 1960.
(11) A likely reason for the reduced product yield is the electron-
withdrawing character of the halogen atom that deactivates the
aromatic ring.
(12) Tetzlaff, J. E. Anesthesiol. Clin. North Am. 2000, 18, 217.
D
Org. Lett. XXXX, XXX, XXX−XXX