6-Methyl-1,2-dihydro-3H-pyrazolo[3,4-b]pyridin-3-one (6a). Yield 53%; mp 278-280ºC (mp
282-283ºC [8]). 1H NMR spectrum, , ppm (J, Hz): 2.49 (3H, s, 6-CH3); 6.21 (1H, d, J = 7.9, H-4); 6.90 (1H, d,
J = 7.9, H-5); 11.36 (2H, br. s, NH). Found, %: C 56.39; H 4.78; N 28.15. C7H7N3O. Calculated, %: C 56.37;
H 4.73; N 28.17.
4,6-Dimethyl-1,2-dihydro-3H-pyrazolo[3,4-b]pyridin-3-one (6b). Yield 50%; mp 300ºC (mp 355ºC
[8, 10]). 1H NMR spectrum, , ppm (J, Hz): 2.44 (3H, s, CH3); 2.51 (3H, s, CH3); 6.67 (1H, s, H-5); 11.16 (2H,
br. s, NH). Found, %: C 58.91; H 5.59; N 25.72. C8H9N3O. Calculated, %: C 58.89; H 5.56; N 25.75.
6-Methyl-4-trifluoromethyl-1,2-dihydro-3H-pyrazolo[3,4-b]pyridin-3-one (6c), 6-Methyl-3-oxo-
2,3-dihydro-1H-pyrazolo[3,4-b]pyridine-4-carboxylic Acid (6d), 4-Methyl-1H-pyrazolo[3,4-b]pyridine-
3,6(2H,7H)-dione (6e) (General Method). A suspension of compound 5c-e (1.4 mmol) in 5% aqueous NaOH
solution (10 ml) was refluxed for 0.5 h, cooled, acidified with dilute HCl solution to pH 5, and the precipitate
formed was filtered off, washed with water, and dried.
6-Methyl-4-trifluoromethyl-1,2-dihydro-3H-pyrazolo[3,4-b]pyridin-3-one (6c). Yield 89%; mp
1
253-254ºC (mp 255-256ºC [11]). H NMR spectrum, , ppm (J, Hz): 2.61 (3H, s, 6-CH3); 7.27 (1H, s, H-5);
11.09 (1H, br. s, NH); 12.48 (1H, br. s, NH). Found, %: C 44.26; H 2.80; N 19.33. C8H6F3N3O. Calculated, %:
44.25; H 2.79; N 19.35.
6-Methyl-3-oxo-2,3-dihydro-1H-pyrazolo[3,4-b]pyridine-4-carboxylic Acid (6d). Yield 95%;
mp > 300ºC. IR spectrum, , cm-1: 1650 (C=O), 1680 (C=O), 3410 (N–H), 3480 (N–H). 1H NMR spectrum, ,
ppm (J, Hz): 2.56 (3H, s, CH3); 7.30 (1H, s, H-5). Found, %: C 49.73; H 3.67; N 21.70. C8H7N3O3. Calculated,
%: C 49.75; H 3.65; N 21.75.
4-Methyl-1H-pyrazolo[3,4-b]pyridine-3,6(2H,7H)-dione (6e). Yield 96%; mp > 300ºC (mp > 300ºC
1
[8, 10]). H NMR spectrum, , ppm (J, Hz): 2.32 (3H, s, 4-CH3); 5.78 (1H, s, H-5); 11.11 (2H, br. s, NH).
Found, %: C 50.88; H 4.30; N 25.41. C7H7N3O2. Calculated, %: C 50.91; H 4.27; N 25.44.
REFERENCES
1.
E. G. Paronikyan, S. N. Sirikanyan, A. S. Noravyan, R. G. Paronikyan, and I. A. Dzhagatspanyan,
Khim.-Farm. Zh., 35, No. 1, 9 (2001).
2.
3.
R. M. Schelkun and P.-W. Yuen, US Pat. Appl. 2006116376.
M. Manpadi, P. Y. Uglinskii, S. K. Rastogi, K. M. Cotter, Y.-S. C. Wong, L. A. Anderson, A. J. Ortega,
S. Slambrouck, W. F. A. Steelant, S. Rogelj, P. Tongwa, M. Y. Antipin, I. V. Magedov, and
A. Kornienko, Org. Biomol. Chem., 5, 3865 (2007).
4.
5.
6.
7.
G. Zoller, S. Petry, G. Muller, H. Heuer, and K.-H. Bar-Inghaus, WO Pat. Appl. 2005073199.
G. Zoller, S. Petry, G. Muller, H. Heuer, and K.-H. N. Tennagels, US Pat. Appl, 2008287448.
A. Chandra Sheker Reddy, B. Narsaiah, and R. V. Venkataratnam, Synth. Commun., 27, 2217 (1997).
Z. A. Kalme, B. Roloff, Yu. E. Pelcher, Yu. Yu. Popelis, F. Hagen, and G. J. Duburs, Khim. Geterotsikl.
Soedin., 1218 (1992). [Chem. Heterocycl. Compd., 28, 1031 (1992)].
8.
9.
R. Balicki, Pol. J. Chem., 57, 1251 (1983).
P. Papini, S. Checchi, and M. Ridi, Gazz. Chim. Ital., 87, 931 (1957).
10.
11.
12.
13.
14.
15.
16.
17.
J.-L. Imbach, R. Jacquier, and J.-L. Vidal, Bull. Soc. Chim. Fr., 1929 (1970).
R. Balicki and P. Nantka-Nemirski, Pol. J. Chem., 54, 2175 (1980).
E. C. Taylor and J. W. Barton, J. Am. Chem. Soc., 81, 2448 (1959).
W. Ried and E. U. Kocher, Justus Liebigs Ann. Chem., 647, 116 (1961).
G. Zoller, S. Petry, G. Muller, H. Hever, and K.-H. N. Tennagels, WO Pat. Appl. 2007110216.
R. Balicki, Pol. J. Chem., 56, 711 (1982).
P. Papini, S. Checchi, and M. Ridi, Gazz. Chim. Ital., 84, 769 (1954).
B. Graham, H. D. Porter, and A. Weissberger, J. Am. Chem. Soc., 71, 983 (1949).
371