K. Leus et al. / Journal of Catalysis 285 (2012) 196–207
[2] H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402 (1999) 276.
207
tert-butylperoxy radical and formation of cyclohexene oxide. The
[
3] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi,
Science 300 (2003) 1127.
energy profile is displayed in Fig. 10 (pathway a). The radical addi-
tion reaction shows a high free-energy barrier, while the reaction is
strongly endergonic, indicating that the backward reaction (disso-
ciation) goes much faster than the forward reaction (association).
In pathway b, a hydrogen abstraction occurs from the allylic posi-
tion of cyclohexene forming the 3-cyclohexenyl radical, which can
rapidly recombine with another tert-butylperoxy radical yielding
the adduct 4. The hydrogen abstraction also requires a high energy
barrier (only 8 kJ/mol lower than in pathway a). The subsequent
radical recombination reaction goes quite quickly since the reac-
tion energy is strongly negative and heavily thermodynamically
driven. These theoretical findings are in complete agreement with
the suggestions made in a recent experimental work of Tonigold
et al. [46] where pathway b has been proposed as the major path-
way. Concluding, without excluding the direct epoxidation of
cyclohexene by the tert-butylperoxy radical tBuOOꢅ, the radical
pathway will favor the adduct formation.
[
4] L.J. Murray, M. Dinca, J.R. Long, Chem. Soc. Rev. 38 (2009) 1294.
[5] L. Pan, B. Parker, X.Y. Huang, D.H. Olson, J. Lee, J. Li, J. Am. Chem. Soc. 128
2006) 4180.
6] J. Perles, M. Iglesias, M.A. Martin-Luengo, M.A. Monge, C. Ruiz-Valero, N.
Snejko, Chem. Mater. 17 (2005) 5837.
(
[
[7] D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 48 (2009) 7502.
8] A. Corma, H. Garcia, F.X.L. Xamena, Chem. Rev. 110 (2010) 4606.
9] P. Van der Voort, M.G. White, E.F. Vansant, Langmuir 14 (1998) 106.
[
[
[
10] G. Catana, R.R. Rao, B.M. Weckhuysen, P. Van Der Voort, E. Vansant, R.A.
Schoonheydt, J. Phys. Chem. B 102 (1998) 8005.
11] P. Van Der Voort, M. Baltes, E.F. Vansant, Catal. Today 68 (2001) 119.
12] A. Henschel, K. Gedrich, R. Kraehnert, S. Kaskel, Chem. Commun. (2008) 4192.
13] N.V. Maksimchuk, K.A. Kovalenko, S.S. Arzumanov, Y.A. Chesalov, M.S.
Melgunov, A.G. Stepanov, V.P. Fedin, O.A. Kholdeeva, Inorg. Chem. 49 (2010)
[
[
[
2920.
[
14] M. Tonigold, Y. Lu, B. Bredenkötter, B. Rieger, S. Bahnmüller, J. Hitzbleck, G.
Langstein, D. Volkmer, Angew. Chem. Int. Ed. 48 (2009) 7546.
[15] N.V. Maksimchuk, M.N. Timofeeva, M.S. Melgunov, A.N. Shmakov, Y.A.
Chesalov, D.N. Dybtsev, V.P. Fedin, O.A. Kholdeeva, J. Catal. 257 (2008) 315.
16] H. Garcia, A. Dhakshinamoorthy, M. Alvaro, Chem. – A Eur. J. 17 (2011) 6256–
262.
17] H. Garcia, A. Dhakshinamoorthy, M. Alvaro, Chemcatchem 2 (2010) 1438–
443.
18] F.X.L.I. Xamena, O. Casanova, R.G. Tailleur, H. Garcia, A. Corma, J. Catal. 255
2008) 220–227.
[19] J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, Nature 404 (2000)
82.
[
[
[
6
1
4
. Conclusions
(
This study reveals that V-MIL-47 can be a highly selective cata-
9
lyst in the epoxidation of cyclohexene using TBHP as the oxidant.
Water should be avoided as the solvent for the peroxide, as it en-
hances strongly the leaching of the V-centers and as it accelerates
an unwanted radical side reaction, forming an adduct between the
peroxide and cyclohexene.
[
[
20] L.Q. Ma, C. Abney, W.B. Lin, Chem. Soc. Rev. 38 (2009) 1248.
21] C.D. Wu, A. Hu, L. Zhang, W.B. Lin, J. Am. Chem. Soc. 127 (2005) 8940.
[22] L.L. Wen, F. Wang, J. Feng, K.L. Lv, C.G. Wang, D.F. Li, Cryst. Growth Des. 9
(2009) 3581.
23] P. Phuengphai, S. Youngme, P. Gamez, J. Reedijk, Dalton T. 39 (2010) 7936.
24] S. Neogi, M.K. Sharma, P.K. Bharadwaj, J. Mol. Catal. A – Chem. 299 (2009) 1.
25] S. Horike, M. Dinca, K. Tamaki, J.R. Long, J. Am. Chem. Soc. 130 (2008) 5854.
[26] F. Gandara, E.G. Puebla, M. Iglesias, D.M. Proserpio, N. Snejko, M.A. Monge,
Chem. Mater. 21 (2009) 655.
27] J. Juan-Alcaniz, E.V. Ramos Fernandez, U. Lafont, J. Gascon, F. Kapteijn, J. Catal.
69 (2010) 229.
[28] M.J. Ingleson, J.P. Barrio, J.B. Guilbaud, Y.Z. Khimyak, M.J. Rosseinsky, Chem.
Commun. (2008) 2680.
29] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Catal. Sci. Technol. 1 (2011) 856–
67.
[30] K. Leus, I. Muylaert, M. Vandichel, G.B. Marin, M. Waroquier, V. Van
Speybroeck, P. Van der Voort, Chem. Commun. 46 (2010) 5085.
31] K. Barthelet, J. Marrot, D. Riou, G. Ferey, Angew. Chem. Int. Ed. 41 (2001) 281.
32] A. Brückner, Top Catal. 38 (1–3) (2006) 133.
[
[
[
When decane is used to dissolve the peroxide, the MIL-47 is a
highly selective catalyst toward the epoxide, especially in the first
linear regime of conversion. The leaching of V-centers is negligible
in that case and the structural integrity of the MOF is preserved
during successive runs. Computational studies show that several
catalytic pathways co-exist and compete with each other, but
every catalytic cycle starts with the breaking of two V-terephthalic
bonds to coordinate with the peroxide. EPR and NMR studies con-
[
2
[
8
+
IV
+V
firm that approximately 20% of the V sites are oxidized to V in
the first minutes of the catalytic reaction and remain relatively
constant afterward.
[
[
[33] A. Fenn, M. Wächtler, T. Gutmann, H. Breitzke, A. Buchholz, I. Lippold, W. Plass,
G. Buntkowsky, Solid State Nucl. Mag. 36 (2009) 192.
[
34] (a) E.P. Talsi, V.D. Chinakov, V.P. Babenko, K.I. Zamaraev, J. Mol. Catal. 81
Acknowledgments
(
(
1993) 235;
b) H. Mimoun, M. Mignard, P. Brechot, L. Saussine, J. Am. Chem. Soc. 108
K.L. is grateful to the Long Term Structural Methusalem Grant
Nr. 01M00409 Funding by the Flemish Government. M.V. thanks
the research board of Ghent University (BOF). I.M. thanks the
Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT Vlaanderen). Furthermore, this
research is co-funded by the Ghent University, GOA Grant Nr.
(1986) 3711.
[
[
36] A. Ghysels, T. Verstraelen, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, J.
38] A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen, M. Waroquier, J.
Chem. Phys. 126 (2007) 224102.
[
[
39] A. Ghysels, D Van Neck, M. Waroquier, J. Chem. Phys. 127 (2007) 164108.
0
1G00710, BELSPO in the frame of IAP 6/27 and the European
[40] A. Ghysels, V. Van Speybroeck, T. Verstraelen, D. Van Neck, M. Waroquier, J.
Chem. Theory Comput. 4 (2008) 614.
Research Council (FP7(2007-2013) ERC Grant Nr. 240483).
Computational resources (Stevin Supercomputer Infrastructure)
and services were provided by Ghent University.
[
41] A. Ghysels, V. Van Speybroeck, E. Pauwels, D. Van Neck, B.R. Brooks, M.
Waroquier, J. Chem. Theory Comput. 5 (2009) 1203.
[42] A. Ghysels, V. Van Speybroeck, E. Pauwels, S. Catak, B.R. Brooks, D. Van Neck,
M. Waroquier, J. Comput. Chem. 31 (2010) 994.
[
43] T. Verstraelen, V. Van Speybroeck, M. Waroquier, J. Chem. Inf. Model. 48 (2008)
1530.
44] V. Van Speybroeck, J. Van der Mynsbrugge, M. Vandichel, K. Hemelsoet, D.
Lesthaeghe, A. Ghysels, G.B. Marin, M. Waroquier, J. Am. Chem. Soc. 133 (4)
Appendix A. Supplementary material
[
(
2011) 888.
[
[
45] E.S. Gould, R.R. Hiatt, K.C. Irwin, J. Am. Chem. Soc. 90 (1980) 4573.
46] M. Tonigold, Y. Lu, A. Mavrandonakis, A. Puls, R. Staudt, J. Mollmer, J. Sauer, D.
Volkmer, Chem. Eur. J. 17 (2011) 8671.
References
[
47] D.E. Van Sickle, F.R. Mayo, R.M. Arluck, J. Am. Chem. Soc. 87 (21) (1965) 4824.
[
1] B.F. Hoskins, R.J. Robson, J. Am. Chem. Soc. 112 (1990) 1546.