Paper
RSC Advances
´
´
M. Sipiczki, A. A. Adam, T. Anitics, Z. Csendes, G. Peintler,
3
4
Conclusions
´
´
´
´
A. Kukovecz, Z. Konya, P. Sipos and I. Palinko, Catal.
2
+
Mesoporous eHA@Co nanotubes or nanorods have been
successfully fabricated by in combination of HCl selective
etching of interior Al
Today, 2015, 241, 231.
4 X. Liu and C. M. Friend, Langmuir, 2010, 26, 16552.
5 G. Yang, M. D. Huff, H. Du, Z. Zhang and Y. Lei, Catal.
Commun., 2017, 99, 43.
6 Y. Fu, D. Sun, M. Qin, R. Huang and Z. Li, RSC Adv., 2012, 2,
3309.
7 D. Sun, F. Sun, X. Deng and Z. Li, Inorg. Chem., 2015, 54,
8639.
8 P. Bujak, P. Bartczak and J. Polanski, J. Catal., 2012, 295, 15.
9 Y. Cao, H. Yu, F. Peng and H. Wang, ACS Catal., 2014, 4,
1617.
2 3
O from halloysite nanotubes and the
2
+
impregnation method. Mesoporous eHA@Co
endowing
2
+
different BET surface area and Co content can be achieved by
simply tuning the etching time and the weight ratio of
Co(NO ) $6H O to eHA in the preparation. The mesoporous
eHA@Co
Co(NO
shows the highest BET surface area and high Co content. The
inuence of etching time and Co(NO $6H O/eHA weight ratio
3
2
2
2
+
prepared with 18 h etching time and 2 : 1
2
+
3
)
2
$6H
2
O/eHA weight ratio (HA/HCl-18 h/Co -2 : 1)
2
+
3
)
2
2
2
+
in the fabrication of eHA@Co on the cyclohexene selective 10 Y. Chang, Y. Lv, F. Lu, F. Zha and Z. Lei, J. Mol. Catal. A:
2
+
oxidation are pored through. It indicates HA/HCl-18 h/Co -2 : 1
demonstrates the highest cyclohexene conversion (58.30%) and 11 A. Abdolmaleki and S. R. Adariani, Catal. Commun., 2015, 59,
the dominant oxidation products are 2-cyclohexen-1-one and 2-
97.
cyclohexen-1-ol in solvent-free reaction system with one-time 12 N. R. Khalili, R. Rahimi and M. Rabbani, Monatsh. Chem.,
bubbled O as oxidants. And cyclohexene catalytic oxidation
2013, 144, 597.
efficiency hinges on the etching time and the weight ratio of 13 A. K. Rahiman, S. Sreedaran, K. S. Bharathi and
Chem., 2010, 320, 56.
2
Co(NO
3
)
2
$6H
2
O to eHA in the preparation. The optimal reaction
V. Narayanan, J. Porous Mater., 2010, 17, 711.
as oxidant for 14 E. Y. Jeong, A. Burri, S. Y. Lee and S. E. Park, J. Mater. Chem.,
ꢀ
condition is 75 C, 18 h, solvent-free and O
2
cyclohexene oxidation to allylic product. According to the
experiment result, a mechanism for cyclohexene oxidation 15 C. M. Chanquia, A. L. Canepa, K. Sapag, P. Reyes,
2010, 20, 10869.
3
+
2+
attributed to reversible Co cycling between Co and Co in
E. R. Herrero, S. G. Casuscelli and G. A. Eimer, Top. Catal.,
2011, 54, 16.
2
+
eHA@Co to catalytic formation of active [O] is suggested. This
work not only provides a facilitate method to large scale 16 E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi and
2
+
synthesis of mesoporous support to achieve eHA@Co nano-
rods and nanotubes, which avoids the surfactant, but also 17 G. J. Churchman and R. M. Carr, Clays Clay Miner., 1975, 23,
affords an efficient catalyst for cyclohexene selective oxidation
382.
to allylic product. Owing to the environmentally friendly reac- 18 S. Barrientos-Ramırez, E. V. Ramos-Fernandez, J. Silvestre-
B. Delvaux, Clay Miner., 2005, 40, 383.
tion system (solvent-free and one-time bubbled O as oxidant),
Albero, A. Sepulveda-Escribano, M. M. Pastor-Blas and
A. Gonzalez-Montiel, Microporous Mesoporous Mater., 2009,
120, 132.
2
this work may highlight the prospect of developing mesoporous
2
+
support for Co as green and recyclable heterogeneous cata-
lysts in allylic oxidation.
19 C. Li, X. Li, X. Duan, G. Li and J. Wang, J. Colloid Interface
Sci., 2014, 436, 70.
2
0 C. Li, J. Wang, S. Feng, Z. Yang and S. Ding, J. Mater. Chem. A,
Conflicts of interest
2013, 1, 8045.
There are no conicts to declare.
21 E. Abdullayev, K. Sakakibara, K. Okamoto, W. Wey, K. Ariga
and Y. Lvov, ACS Appl. Mater. Interfaces, 2011, 3, 4040.
2
2 J. Liang, B. Dong, S. Ding, C. Li, B. Q. Li, J. Li and G. Yang, J.
Mater. Chem. A, 2014, 2, 11299.
Acknowledgements
The authors gratefully acknowledge the nancial support 23 C. Li, T. Zhou, T. Zhu and X. Li, RSC Adv., 2015, 5, 98482.
provided by the National Natural Science Foundation of China 24 C. Li, J. Wang, X. Luo and S. Ding, J. Colloid Interface Sci.,
(
No. 51563023 and 51003091), the Natural Science Foundation
of Yunnan Province (No. 2013FB002), the Education Research 25 C. Li, J. Wang, H. Guo and S. Ding, J. Colloid Interface Sci.,
Foundation of Yunnan Province (No. 2013Y361), the Program
2015, 458, 1.
for Excellent Young Talents, Yunnan University (No. WX069051) 26 T. Zhou, C. Li, H. Jin, Y. Lian and W. Han, ACS Appl. Mater.
2014, 420, 1.
and the Backbone Teacher Training Program of Yunnan
University (No. 21132014).
Interfaces, 2017, 9, 6030.
27 T. Zhou, Y. Zhao, W. Han, H. Xie, C. Li and M. Yuan, J. Mater.
Chem. A, 2017, 5, 18230.
2
8 E. Abdullayev, A. Joshi, W. Wei, Y. Zhao and Y. Lvov, ACS
Nano, 2012, 6, 7216.
Notes and references
1
Y. Cao, H. Yu, H. Wang and F. Peng, Catal. Commun., 2017, 29 H. W. van der Marel and H. Beutelspacher, Atlas of Infrared
8
8, 99.
Spectroscopy of Clay Minerals and their Admixtures., Elsevier
scientic publishing company, New York, 1976.
2
T. Imahori, T. Tokuda, T. Taguchi and H. Takahata, Org.
Lett., 2012, 14, 1172.
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 14870–14878 | 14877