8
026
J . Org. Chem. 2001, 66, 8026-8029
P h otooxid a tion of Olefin s Sen sitized by Bisa za fu ller en e (C59N)
a n d Hyd r oa za fu ller en e C59HN: P r od u ct An a lysis, Em ission of
Sin glet Oxygen , a n d Tr a n sien t Absor p tion Sp ectr oscop y
2
Nikos Tagmatarchis and Hisanori Shinohara*
Department of Chemistry, Nagoya University, Nagoya 464-8602, J apan
Mamoru Fujitsuka and Osamu Ito*
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira,
Aoba-ku, Sendai 980-8577, J apan
Received May 7, 2001
The photooxidation reactions of olefins sensitized by the excited triplet states of bisazafullerene
and hydroazafullerene C59HN have been studied. Oxidation yields were compared with
those of pristine C60. The singlet oxygen yields are also determined directly from the emission
(C59N)
2
intensities, which are in good agreement with the oxidation yields. The triplet states of (C59N)
2
and C59HN have been identified by the time-resolved spectroscopic method by observing the triplet-
triplet absorption spectra, which decay in the presence of oxygen. It has been proven that (C59N)
2
and C59HN have the ability to sensitize the reactions via singlet oxygen in about half of the efficiency
of that of pristine C60. For both azafullerenes, the triplet lifetimes are shorter than that of pristine
C
60, which may be related to the nitrogen atom embedded in the C60 moiety.
In tr od u ction
The incorporation of a nitrogen atom into the fullerene
skeleton strongly perturbs not only the structural char-
acter of the parent molecule but also its electronic and
physical properties.1 The macroscopic synthesis of the
simplest azafullerene, namely, C59N, was achieved by a
,2
3
,4
three-step organic reaction sequence starting from C60
.
•
The resulting azafullerenyl radical C59N , a product of
the difference in valence between a tetravalent carbon
atom and a trivalent nitrogen, is a highly reactive species.
Consequently, the radical dimerizes yielding bisazaful-
59 2
F igu r e 1. Molecular structures of bisazafullerene (C N) and
hydroazafullerene C59HN.
5
lerene (C59N)
2
.
If the synthetic procedure is slightly
modified, hydroazafullerene C59HN is formed (Figure
6
,7
studies have been performed for various fullerenes and
1
).
their derivatives,1
1,12
only a few preliminary results have
The studies on the photochemical and physical proper-
ties of fullerenes shed light on their electronic structures
and photoexcited states and can lead to their potential
been reported so far for the family of the azafullerene
analogues,13 mainly because of the difficulty in their
synthesis. Also, detailed photochemical and physical
applications in materials science ranging from supercon-
ductivity to nanostructured devices.8-10 Although such
2 2
studies on the dimeric structures of (C60) and (C60) O
have already appeared in the literature.1
Very recently, we showed from the product analysis of
the reaction mixture that both (C59N) and C59HN pho-
4,15
*
Corresponding authors. H. Shinohara: fax, +81-52-789-3660.
O. Ito: fax, +81-22-217-5608; e-mail, ito@tagen.tohoku.ac.jp.
1) Andreoni, W.; Gygi, F.; Parinello, M. Chem. Phys. Lett. 1992,
90, 159.
2) Andreoni, W.; Curioni, A.; Holczer, K.; Prassides, K.; Keshavarz-
K, M.; Hummelen, J . C.; Wudl, F. J . Am. Chem. Soc. 1996, 118, 11335.
3) Hummelen, J . C.; Bellavia-Lund, C.; Wudl, F. Top. Curr. Chem.
999, 199, 93.
2
1
6
(
tosensitize the reaction of olefins with oxygen. In that
study, however, the generation of singlet oxygen upon
1
(
(
(10) Haddon, R. C.; Hebard, A. F.; Rosseinsky, M. J .; Murphy, D.
W.; Duclos, S. J .; Lyons, K. B.; Miller, B.; Rosamilia, J . M.; Fleming,
R. M.; Kortan, A. R.; Glarum, S. H.; Makhija, A. V.; Muller, A. J .; Eick,
R. H.; Zahurak, S. M.; Tycko, R.; Dabbagh, G.; Thiel, F. A. Nature 1991,
350, 320.
(11) Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000, 33, 695.
(12) Foote, C. S. Top. Curr. Chem. 1994, 169, 347.
(13) Ma, B.; Weitz, A.; Wudl, F. Proc. Electrochem. Soc. 1999, 99,
359.
(14) Fujitsuka, M.; Luo, C.; Ito, O.; Murata, Y.; Komatsu, K. J . Phys.
Chem. A 1999, 103, 7155.
(15) Fujitsuka, M.; Takahashi, H.; Kudo, T.; Tohji, K.; Kasuya, A.;
Ito, O. J . Phys. Chem. A 2001, 105, 675.
1
(
(
4) Hirsch, A.; Nuber, B. Acc. Chem. Res. 1999, 32, 795.
5) Hummelen, J . C.; Knight, B.; Pavlovich, J .; Gonzalez, R.; Wudl,
F. Science 1995, 269, 1554.
6) Keshavarz-K, M.; Gonzalez, R.; Hicks, R. G.; Srdanov, G.;
(
Srdanov, V. I.; Collins, T. G.; Hummelen, J . C.; Bellavia-Lund, C.;
Pavlovich, J .; Wudl, F.; Holczer, K. Nature 1996, 383, 147.
(
7) Tagmatarchis, N.; Pichler, T.; Krause, M.; Kuzmany, H.; Shi-
nohara, H. J . Chem. Soc., Perkin Trans. 2 2000, 2361.
8) Haddon, R. C.; Perel, A. S.; Morris, R. C.; Palstra, T. T. M.;
Hebrad, A. F.; Fleming, R. M. Appl. Phys. Lett. 1995, 67, 121.
9) Haddon, R. C.; Siegrist, T.; Fleming, R. M.; Bridenbaugh, P. M.;
Laudise, R. A. J . Mater. Chem. 1995, 5, 1719.
(
(
(16) Tagmatarchis, N.; Shinohara, H. Org. Lett. 2000, 2, 3551.
1
0.1021/jo0104678 CCC: $20.00 © 2001 American Chemical Society
Published on Web 10/27/2001