Organic Letters
Letter
hydrogen-bonding interaction between a fluorine atom of the
CF3 group and a hydrogen atom on the methoxyphenyl group.
DFT calculations also revealed the key for the reversal of
diastereoselectivity between 4 and 8. Consistent with the
experimental results, trans-8a is more stable than cis-8a. The
reversal of the diastereoselectivity is ascribed to the greater
distortion of the spiroisochroman core structure in cis-8a by
the introduction of the two methyl groups at the benzylic
position compared with that in trans-8a (see the Supporting
In summary, we have developed an efficient diastereose-
lective synthesis of CF3-substituted spiroisochromans via
C(sp3)−H bond functionalization involving sequential trans-
formations ([1,5]-hydride shift/cyclization/elimination of
MeOH/intramolecular Friedel−Crafts reaction). A range of
substrates provided the desired CF3-substituted spirocycles
4a−j in good to excellent chemical yields with high cis
selectivities. Interestingly, the introduction of two methyl
groups at the benzylic position reversed the diastereoselectivity
to furnish the trans isomers preferentially. Further investigation
of the synthesis of useful polycyclic skeletons by the hydride
shift/cyclization-initiated sequential reaction is underway in
our laboratory
REFERENCES
■
(1) For recent reviews of C−H activation, see: (a) Godula, K.;
Sames, D. Science 2006, 312, 67. (b) Bergman, R. G. Nature 2007,
446, 391. (c) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007,
107, 174. (d) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417.
(e) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int.
Ed. 2009, 48, 5094. (f) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-
Kreutzer, J.; Baudoin, O. Chem. - Eur. J. 2010, 16, 2654. (g) Lyons, T.
W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (h) Davies, H. M. L.;
Du Bois, J.; Yu, J.-Q. Chem. Soc. Rev. 2011, 40, 1855. (i) Bruckl, T.;
̈
Baxter, R. D.; Ishihara, Y.; Baran, P. S. Acc. Chem. Res. 2012, 45, 826.
(j) Qin, Y.; Lv, J.; Luo, S. Tetrahedron Lett. 2014, 55, 551. (k) Davies,
H. M. L.; Morton, D. J. J. Org. Chem. 2016, 81, 343. Also see the
highlight on visible-light photocatalysis: (l) Hu, X.-Q.; Chen, J.-R.;
Xiao, W.-J. Angew. Chem., Int. Ed. 2017, 56, 1960.
(2) For recent reviews of the internal redox process, see: (a) Tobisu,
M.; Chatani, N. Angew. Chem., Int. Ed. 2006, 45, 1683. (b) Pan, S. C.
Beilstein J. Org. Chem. 2012, 8, 1374. (c) Wang, M. ChemCatChem
2013, 5, 1291. (d) Peng, B.; Maulide, N. Chem. - Eur. J. 2013, 19,
13274. (e) Wang, L.; Xiao, J. Adv. Synth. Catal. 2014, 356, 1137.
(f) Haibach, M. C.; Seidel, D. Angew. Chem., Int. Ed. 2014, 53, 5010.
(g) Kwon, S. J.; Kim, D. Y. Chem. Rec. 2016, 16, 1191.
(3) For the internal redox reaction developed by our group, see:
(a) Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009,
38, 524. (b) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett.
2010, 12, 1732. (c) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem.
Soc. 2011, 133, 2424. (d) Mori, K.; Sueoka, S.; Akiyama, T. Chem.
Lett. 2011, 40, 1386. (e) Mori, K.; Kawasaki, T.; Akiyama, T. Org.
Lett. 2012, 14, 1436. (f) Mori, K.; Kurihara, K.; Akiyama, T. Chem.
Commun. 2014, 50, 3729. (g) Mori, K.; Umehara, N.; Akiyama, T.
Adv. Synth. Catal. 2015, 357, 901. (h) Yoshida, T.; Mori, K. Chem.
Commun. 2017, 53, 4319. (i) Machida, M.; Mori, K. Chem. Lett. 2018,
47, 868. (j) Yokoo, K.; Mori, K. Chem. Commun. 2018, 54, 6927.
(k) Hisano, N.; Kamei, Y.; Kansaku, Y.; Yamanaka, M.; Mori, K. Org.
Lett. 2018, 20, 4223. (l) Yoshida, T.; Mori, K. Chem. Commun. 2018,
54, 12686. For an asymmetric version of the internal redox reaction
catalyzed by a chiral phosphoric acid, see: (m) Mori, K.; Ehara, K.;
Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166.
(4) For double C(sp3)−H bond functionalization by sequential
utilization of the internal redox reaction developed by our group, see:
(a) Mori, K.; Kurihara, K.; Yabe, S.; Yamanaka, M.; Akiyama, T. J.
Am. Chem. Soc. 2014, 136, 3744. Also see: Wang, L.; Xiao, J. Org.
Chem. Front. 2016, 3, 635. (b) Mori, K.; Umehara, N.; Akiyama, T.
Chem. Sci. 2018, 9, 7327. For an enantioselective version catalyzed by
a chiral magnesium bisphosphate, see: (c) Mori, K.; Isogai, R.; Kamei,
Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2018, 140, 6203.
(5) This type of reaction is classified as the “tert-amino effect.” For
reviews, see: (a) Meth-Cohn, O.; Suschitzky, H. Adv. Heterocycl.
Chem. 1972, 14, 211. (b) Verboom, W.; Reinhoudt, D. N. Recl. Trav.
Chim. Pays-Bas 1990, 109, 311. (c) Meth-Cohn, O. Adv. Heterocycl.
Chem. 1996, 65, 1. (d) Quintela, J. M. Recent Res. Dev. Org. Chem.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, analytical and spectroscopic
data for new compounds, computational details, and
Cartesian coordinates (PDF)
1H, 13C, and 19F NMR spectra of new compounds
Accession Codes
tallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
́
́
́
́
2003, 7, 259. (e) Matyus, P.; Elias, O.; Tapolcsanyi, P.; Polonka-
́
́
́
Balint, A.; Halasz-Dajka, B. Synthesis 2006, 2625.
(6) For selected examples of internal redox reactions, see:
(a) Pastine, S. J.; McQuaid, K. M.; Sames, D. J. Am. Chem. Soc.
2005, 127, 12180. (b) Pastine, S. J.; Sames, D. Org. Lett. 2005, 7,
ORCID
́
́
́
5429. (c) Polonka-Balint, A.; Saraceno, C.; Ludanyi, K.; Benyei, A.;
́
Matyus, P. Synlett 2008, 2846. (d) Zhang, C.; Murarka, S.; Seidel, D.
J. Org. Chem. 2009, 74, 419. (e) McQuaid, K. M.; Sames, D. J. Am.
Chem. Soc. 2009, 131, 402. (f) Shikanai, D.; Murase, H.; Hata, T.;
Urabe, H. J. Am. Chem. Soc. 2009, 131, 3166. (g) Ruble, J. C.; Hurd,
A. R.; Johnson, T. A.; Sherry, D. A.; Barbachyn, M.; Toogood, R. P.
L.; Bundy, G. L.; Graber, D. R.; Kamilar, G. M. J. Am. Chem. Soc.
2009, 131, 3991. (h) Mahoney, M. J.; Moon, D. T.; Hollinger, J.;
Fillion, E. Tetrahedron Lett. 2009, 50, 4706. (i) McQuaid, K. M.;
Long, J. Z.; Sames, D. Org. Lett. 2009, 11, 2972. (j) Vadola, P. A.;
Sames, D. J. Am. Chem. Soc. 2009, 131, 16525. (k) Zhou, G.; Zhang, J.
Chem. Commun. 2010, 46, 6593. (l) Jurberg, I. D.; Peng, B.;
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was partially supported by a Grant-in-Aid for
Scientific Research from the Japan Society for the Promotion
of Science, and by grants from The Uehara Memorial
Foundation and The Naito Foundation.
̈
Wostefeld, E.; Wasserloos, M.; Maulide, N. Angew. Chem., Int. Ed.
D
Org. Lett. XXXX, XXX, XXX−XXX